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1. INTRODUCTION 

The set of algebraic integers (hereinafter called integers) of the quadra-
tic number field Q(VE) is given by 

Z(oo) = {a + bu i a, b E Z}, 
where 0) = %(1 + V5) . It is well known that Z(OJ) is a Euclidean domain [6, pp. 
214-15], and that the units of Z(oo) are given by ±0)n, where nEZ [6, p. 221]. 

The Binet formula _ _ 
Fn = (00n - 03n)/((A) - W) = (0Dn - 0)n)/>/5, 

where 0) = %(1 - v5) is the conjugate of 0), expresses the nth Fibonacci number 
in terms of the unit 0). Simiarly, the nth Lucas number is given by Ln = b)n + 0)". 
Also, an elementary induction argument using the result (i)2 = 03 + 1 shows that 
0)n = Fn,1 + Fnb) for n > 1. These results suggest that the arithmetic theory of 
Z(oo) can be a powerful tool in the investigation of the arithmetical properties 
of the Fibonacci and Lucas numbers. This is indeed the case, and the articles 
by Carlitz [4],Lind [10], and Lagarias & Weisser [9] utilize Z(oo) on a limited 
scale. In this paper, I further document the utility of Z(OJ) by deriving many 
of the familiar divisibility properties of the Fibonacci numbers using the 
arithmetic theory of Z((JO). Much of the development has been adapted from pages 
164-174 of my doctoral dissertation [5], which gives a comprehensive treatment 
of number theory in Z(co). 

2. CONVENTIONS AND PRELIMINARIES 

We assume it is known that Z(OJ) is a Euclidean domain and that the units of 
Z(OJ) are given by ±oon. In the proof of Theorem 5, we use some results from 
quadratic residue theory. Apart from this, only the first notions of elementary 
number theory are taken for granted. 

Throughout this paper, lower case Latin letters denote rational integers 
(elements of Z), and lower case Greek letters denote elements of Z(o)). The 
Fibonacci number Fn is denoted by F(n), and n is called the index of the Fibo-
nacci number F(n). Also, p and q denote rational primes; and m, ft, and v de-
note positive rational integers. A greatest common divisor of a and 3 is 
denoted by GCD(a, 3). Of course, GCD(a, 3) is unique up to associates. We 
continue to use gcd(a, b) in the sense of rational integer theory; that is, 
gcd(a, b) is the unique largest positive rational integer that divides both a 
and b. We say that a and 3 are congruent modulo u, and write a E 3 (MOD y), 
provided y|(a - 3); that is, a - 3 = -yy for some y. We continue to use a E b 
(mod m) in the traditional rational integer sense. In the present setting this 
notation is a bit superfluous since a E b (mod m) If and only if a E b (MOD m). 
As in rational integer theory, a + y E 3 + 6 (MOD y) and ay E 36 (MOD y) when-
ever a E 3 (MOD y) and y E 6 (MOD y). Finally, it is clear that m\ (o + db)) in 
the sense of Z(ud) if and only if m\o and m\d in the sense of Z. 
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3. SIMPLEST DIVISIBILITY PROPERTIES 

Our first efforts will be directed toward establishing the classic results 
listed in Theorem 4. The reader is no doubt familiar with the standard proofs 
such as found in [6, pp. 148-49] and [11, pp. 29-32]. The attack here is dif-
ferent: An arithmetical function V(n) with values in Z((JO) and closely related 
to F(n) is introduced. This function will be shown to have properties anal-
ogous to those of F(ri) in Theorem 4. Theorem 4 will than follow as a simple 
corollary. 

Definition 1: V(n) = oo2n - ( - l ) n . 

Theorem 1: V(n) = /5o)wF(n). 

Proof: By the Binet formula, we have 

i/5a)*F(w) = con(o)n - con) = u2n - (im)n = co2n - ( - l ) w = V(n). Q.E.D. 

Theorem 2: I f m\n, then V(m)\V(n). 

Proof: Let a = co2m, 3 = ( - l ) w , and n = rot, so t h a t 

V(m) = a - 3 and V{n) = a* - 3 t . 

Then y = at_1 + at_23 + ••• .+ 3t_1 is an integer and 

V(n) = a* - B* = (a - g)y = 7(m) • y. 

Thus T(m)|F(n). Q.E.D. 

Lemma 1: if a)2n = (-1)" (MOD y), then a)2na = (-l)na (MOD y) for any rational 
integer a. 

Proof: If a > 0, the result is immediate. If a < 0, aT2na E (-l)"na (MOD 
y) . Multiplying both sides of the last congruence by the integer (-l)na0)2na, 
we obtain a)2na E (-l)na (MOD y). Q.E.D. 

Theorem 3: if d = gcd(n, m), then GCD(7(n), 7(m)) = 7(d). 

Proof: Let 6 = GCD(7(n), 7(??0). Since d - gcd(n, w) , there exist a and Z? 
such that d = ma + nfc. Now 7.(777) = 0 (MOD 6), so that co2"7 = (-l)m (MOD 6). Simi-
larly, w2n = (-l)n (MOD 6). Thus, by Lemma 1, 

a)2Wa E (_1)Wa ( M 0 D 6 ) a n d ^inb = (_1}n£ ( M Q D 6 ) # 

Accordingly, o)2^ + 2 ^ = (-l)^a+wi (MOD 6), and since d = ma + ni, a)2'* = (-1)<* 
(MOD 6). Consequently, 7(d) = oo2d - (-l)d = 0 (MOD 5); that is, 617(d). Con-
versely, since d\n and d\m9 7(d) |7(n) and V(d)\V(m) by Theorem 2; and so V(d) |<5 . 
We thus conclude that 6 = V(d) (up to associates). Q.E.D. 

Theorem 4: (i) if m\n, then F(w) |F(n). 
(ii) If d = gcd(7??,n), then gcd(F(/?7), F(n)) = F(d) . In particular, 

if gcd(m9n) = 1, then gcd(F(w), F(n)) = 1. 
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(iii) If gcd(n, m) = 1, then F(m) * F(n)\F(mn). 
(iv) If 777 > 2, then 777|n if and only if FQn)\F(n). 

Proof: If m\ns then V(m)\V(n) by Theorem 2. Thus, by Theorem 1, SbTFim) 
divides y/5un F(n); and since w is a unit, F(m)\F(n). This establishes (i). By 
Theorems 1 and 3, we have 

/5udF(d) = V(d) = GCD(7(777), V(n)) = GCD (/5um F (m), v V ^ n ) ) 

= /5GCD(F(m), F(n)). 

Thus F(d) = GCD(F(m), F(w)), and so F(d) = gcd(F(m), F{n)). Consequently, (ii) 
is true. Now (iii) follows from (i) and (ii), because F{m)\F(mri), F{n)\F(mn), 
and gcd(F(77?)s F(n)) = 1. Half of (iv) follows from (i) . Suppose F(m)\F(n). 
Then by (ii) we have F(m) = gcd(F(m) 9 F{n)) = F(d), where J = gcd(/77, n) . Thus 
F(77z) = F(d); and if 777 > 2, we have m = d = gcd(m5 n) , so that 777 |n. Q.E.D. 

Corollary 1: gcd(F(n), F(n + 1)) = 1. 

Proof: We have ged(n, n + 1) = 1, and so, by Theorem 4(ii), 

gcd(F(n), F(n + 1)) = F(l) = 1. Q.E.D. 

4. LAW OF APPARITION AND RELATED RESULTS 

If 777 > 0 is given, then a classical result states that 777 divides some Fibo-
nacci number having positive index not exceeding m2 [7, p. 44]. In this section 
we deal with various aspects of this problem. The key results we need from the 
arithmetic theory of Z(o)) are found in Theorems 5 and 6. Theorem 5 and its 
proof is a special case of Theorem 258 in Hardy and Wright [6, pp. 222-23]. 
Theorem 6, although trivial to prove, will be used many times in the remainder 
of this paper. 

Theorem 5: If p E ±2 (mod 5) and q E ±1 (mod 5), then 

(i) 0)p + 1 = -1 (MOD p) and (ii) o^-1 E 1 (MOD q) . 

Proof: Since 032-O3~ = O3+l-(l-O3) = 2OJ, then 032 E 03 (MOD 2). Accord-
ingly, a)3 E aico = -1 (MOD 2) and the result is true for p = 2. 

Now let t ̂  5 be an odd rational prime. Since 2t E 2 (mod t), by FermatTs 
theorem for rational integers, we have 

20)* E (2oj)* = (1 + i/5)* = 1 + S ^ " 1 ^ (MOD t). 

By E u l e r ' s c r i t e r i o n f o r q u a d r a t i c r e s i d u e s , 5 ^ ( t _ 1 ) = ( 5 | t ) (mod £) . T h e r e f o r e , 
203* E 1 + ( 5 | t ) V 5 (MOD t ) . By q u a d r a t i c r e c i p r o c i t y , ( 5 | p ) = ( p | 5 ) = - 1 and 
( 5 | ? ) = (q\5) = 1 . Thus 

203p E 1 - V^ = 203 (MOD p ) and 203^ E 1 + A/5 = 203 (MOD q) . 

By c a n c e l l a t i o n , OJP E oT (MOD p ) and 03 ̂  E 03 (MOD <?) . Thus 

oop + 1 E 030) = - 1 (MOD p ) and O ) ^ 1 = of V 7 E 03_103 = 1 (MOD q). Q . E . D . 
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Theorem 6: We have that m\F(n) if and only if 03n is congruent modulo m to a 
rational integer- Moreover, if m\F(n)y then Ud71 E F(n - 1) (MOD m) . 

Proof: If m\F(n), then 

03n = F(n - 1) + F(rc)cu = F(rc - 1) (MOD w) . 

Conversely, if o)n = a (MOD ???), then HSn E a (MOD m) . Thus, we have a)n - ~0dn = 0 
(MOD w) ; and since 

w* - Bn = /5F(n) = (-1 + 2o))F(n) ~ -F(n) + 2F(w)a), 

it follows thatm|F(n). Q.E.D. 

Theorem 7 (Law of Apparition): I f p = ±2 (mod 5) and q = ±1 (mod 5 ) , then 

( i ) p\F(p + 1 ) , ( i i ) q\F(q - I ) , and ( i i i ) 5 | F ( 5 ) . 

Proof: By Theorem 5, wp + 1 = -1 (MOD p) and a/7""1 = 1 (MOD q) . Thus, by 
Theorem 6, p|F(p + 1) and q\F(q - 1). Assertion (iii) is immediate, because 
F(5) = 5. Q.E.D* 

Theorem 8: If pv\F(n), then pr+1|F(np). 

Proof: Since pr|F(n), w" E a (MOD pr) by Theorem 6. Thus con = a + ppa and 
so 

a/*? =* (a. + p^a)P Ea? + pa^^a = a? (MOD p r + 1 ) . 

It therefore follows from Theorem 6 that p^^"1]^^). Q.E.D. 

Theorem 9: If p[F(n>, then pr\F(pr'1n)... 

Proof:, The proof is by induction on P. By hypothesis, the result holds 
for r = 1; and if pT\F(pT~ln) 9 then pr+1|F(ppn) by Theorem 8. Q.E.D. 

Theorem 10: If p E +2 (mod 5) and q ~ +1 (mod 5), then 

(i) pr\F(pr"7(p•+ 1)), (ii) ^ [ F ^ " - 1 ^ - 1)), (iii) 5p|F(5r). 

Proof? Immediate from Theorems 7 and 9. 

Definition 2 ; I f p- = +21 (mod 5) and q =' +1 (mod 5 ) , then 

T ( l l » *, ^Cp** = p r - 1 ( p + 1), . n q P > - ^ " " ' O ? - 1 ) , T(5r) = 5 P ; 
and i f m has. the: r a t i o n a l prime decomposi t ion nr =? p^p^2 • •• P° s > then 

^w - icm(np )̂„ HP*2), ...*** np;o). 
Theorem 1U We have m|*F(T(m)). 

Proofi The result is certainly true if TTT - 1.. If m > 1, then let m have 
the rational prime decomposition 

m = p^p^ ^. p^s -

Since Tip?*) divides T(T??) , F(T(p^)) divides F(T(m)) by Theorem 4(i). Also pV-
divides F(T(p?0) by Theorem 10 and Definition 2. Thus, p?i divides F(T(m)), 
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And since the pe* are pairwise relatively prime, m divides F(T(m)). Q.E.D. 

The result mentioned at the beginning of this section is an immediate con-
sequence of Theorem 11, since it is clear that 1 < T(m) < m2. Theorem 11 is a 
stronger result in the sense that it exhibits an easily calculated positive 
index n for which m\F(n) * 

5-, RANK OF APPARITION 

Given m > 0, it is natural to ask for the smallest t > 0 for which m\F(t). 
We might take T(m) as a tentative guess for t . This guess may not be correct 
(T(17) = 18 and 17|F(9)), but as we shall presently see in Theorem 13, t\T(m). 

Definition 3: The rank of apparition of m > 0, denoted by R(m), is the small-
est t > 0 such that m\F(t) . We also say that the index t is the point of entry 
of m in the Fibonacci numbers. 

Tables of R(p) are readily available. Brousseau [1] gives R(p) for each 
rational prime p < 269, while {2] does the same for p < 48,179 and [3] does 
for 48,179 < p < 100,000. Jarden, in [8], gives R(p) for each rational prime 
p < 1512. The following theorem gives a concise formulation of R(m) in terms 
of the structure of Z((JO). 

Theorem 12: R(m) is the smallest t > 0 such that a)* is congruent modulo m to 
a rational integer. 

Proof: Immediate from Theorem 6. Q.E.D. 

It should be noted that the period of m in the Fibonacci numbers also has 
a concise formulation in Z(u)), Recall that the period of m in the Fibonacci 
numbers is the smallest t > 0 such that F(t - 1) E 1 (mod m) and F(t) E 0 (mod 
m) . Thus, since 03* = F(t - 1) 4- F(t)o), it follows that the period of m in the 
Fibonacci numbers is the smallest £ > 0 such that oat E 1 (MOD m). 

The following trivial lemma paves the way for Theorem 13, the main result 
of this section. 

Lemma 2: The integer e + did is congruent modulo m to a rational integer if and 
only if m\d' 

Proof: If m\d9 then e + dco = o <M0D m) . Conversely, if c + du) E a (MOD m) , 
then ?7z|(e - a) and w|<i. Q..E.D. 

Theorem 13: We have that m\F(n) if and only if R(m)\n. 

Proof: Let £ = R{m). First, suppose that t|n. Then, by Theorem 4(i), we 
have F(t)|F(n); and since m\F(t)* it follows that 77?|F(n). Conversely, suppose 
that m|F(n). Then wn = Z? (MOD m) by Theorem 6. Since n > t , then n = s£ + tf, 
where s > 0 and 0 < x < £. Thus, as to* E a (MOD m) for some a with gcd(a, m) 
= 1 (Theorem 6), we have b E wn - wst + * = as(dx (MOD m) . Suppose a; + 0. Then 
a)27 = Q + <2GO and 7771 d. [For, if #2|d, we would have idx = £ (MOD w) by Lemma 2, 
and so m\F(x) > a contradiction to the minimality of £.] Thus, fc E <?as + das(d 
(MOD 7??). This is impossible by Lemma 2 [gcd(a5 m) = 1 and m|d; thus m|das.] 
Accordingly, a? = 0, and so t\n. Q.E.D. 
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6. LAW OF REPETITION 

We now direct our efforts to establishing the law of repetition (Theorem 
15). Along the way, we will establish Theorem 14 and Lemma 3. Theorem 14 is 
an important result in its own right, whereas Lemma 3 is instrumental in prov-
ing the law of repetition. The proof of Lemma 3 will be the last use of the 
arithmetic theory of Z(co) in this paper. 

Definition 4: By pr\\n, we mean that pr\n and pr+1\n. 

Theorem 14: If pr\\F(n)9 then pr + 1\F(nm) if and only if p\m. 

Proof: Suppose p\m. We have that pr+1\F(np) by Theorem 8; and since np\mn9 
it follows from Theorem 4(i) that F(np) |F(run). Now suppose that pr+1\F(nm). 
Set a = F(n- 1) and bpr = F(n). Since pr\\F(n)9 it follows that gcd(b9 p) = 1; 
and gcd(a, p) = 1, since F(n - 1) and F(n) are relatively prime. Therefore, 
gcd(ab9 p) = 1. Also, 

o)nm = (a + bpru>)m = am + m^-^p^d) (MOD p p + 1 ) . 

Now pp + 1 |F(?tf7?), and so, by Theorem 6, we have 

am + mam-1bpru = c (MOD p P + 1 ) . 

But, by Lemma 2, this means that p\mam~1b; and since gcd(a£>, p) = 1, it follows 
that p\m. Q.E.D. 

Lemma 3: If pT\F(n) and gcd(m, p) = 1, then 

pr+1 \F(nmp) , 
and if pr ̂  2, then 

pr + 1||F(nmp). 

Proof: Since n\nm9 then F(n)|F(nm), and so pv\F(rw\), Thus, pr+1\F(nmp), 
by Theorem 8. Also, since gcd(m9 p) = 1, we have p\m9 so that pr+1\F(nm), by 
Theorem 14. Accordingly, p;r,||.F(ntf7). Let # = run. Then we have pr\\F(x)9 and we 
are to show that, if pr f 2, then pr+1 \\F(xp). Of course, we already know that 
pr+1\F(xp), and so it only remains to show that pv+2\F(xp) . 

Suppose first that p > 2. Seta = F(x - 1) and bpr = F(x). As in the proof 
of Theorem 14, we have gcd(ab9 p) = 1. Also, 

u)px = (a + bpr^y =aP + pr+1ap-1btt + apr+2. 
Thus, 

oop* = ap + pr+1ap_1to (MOD pr+2), 

and since pr+2|pr+1ap~1&, it follows that oopx is not congruent modulo pr+2 to a 
rational integer (Lemma 2) . Therefore, by Theorem 6, pr + 2|F(xp). 

The proof for the exceptional case p = 2, r > 1, is exactly the same. (The 
condition r > 1 is needed to obtain the term apr+2.) Q.E.D. 

Theorem 15 (Law of Repetition): if pr\F(n) and gcd(m, p) = 1, then, for any 
k > 0, pp + fe|F(ntf?pk), and if pr ̂  2, pr + k\F(nmpk). 

Proof: Straightforward induction on fe using Theorem 8 and Lemma 3. Q.E.D. 
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7- FURTHER DIVISIBILITY RESULTS 

We conclude this article by listing in Theorems 16-20 additional well-known 
divisibility results which readily follow from Theorems 13-15. Since no addi-
tional use of the arithmetic theory of Z(oo) is needed, the proofs are left to 
the reader. 

Theorem 16: if p + 2, t = i?(p), pr\\F(t)9 and k > 0, then pr+k\\F(n) if and only 
if n = tmpk, where gcd(m, p) = 1. 

Theorem 17: (i) l\\F(n) if and only if n = 3???, where gcd(m, 2) = 1. 
(ii) If k > 0, then 23 + k\\F(n) if and only if n = 2k+1 • 3 • m, where 

gcd(w, 2) = 1. 

Theorem 18: If p ^ 2, t = i?(p), and pr||F(£), then 

i?(pn) = f pn,ax(0'n-r) and p r + max(0'n-r)||F(i?(p")). 

Theorem 19: t 3, n = 1 
i?(2n) = { 2 • 3, n = 2. 

( 2n~2 • 3, n > 3 

Furthermore, 2||F(3), 23 ||F(2 • 3), and 2n||F(2n~2 • 3) for n > 3. 

Theorem 20: If m = p^p^2 -•• P^s » then 

i?(/??) = lcm(i?(p*i), ..., i?(p/')). 
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