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DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn + 1 + f n » ^0 = °> ^ 1 = 1 

and 
Ln+2 = Ln+1 + Ln> L

0
 = 2> Li = 1' 

Also, a and 3 designate the roots (1 + v5)/2 and (1 - v5)/2, respectively, of 
x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-520 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

(a) Suppose that one has a table for multiplication (mod 10) in which a, 
b, , . . , j have been substituted for 0, 1, . .., 9 in some order. How many de-
codings of the substitution are possible? 

(B) Answer the analogous question for a table of multiplication (mod 12). 

B-521 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

See the previous problem. Find all moduli m > 1 for which the multiplica-
tion (mod m) table can be decoded in only one way. 

B-522 Proposed by loan Tomescu, University of Bucharest, Romania 

Find the number A(n) of sequences (al5 a2, ..., ak) of integers ai satisfy-
ing 1 < at < ai + 1 < n and ai + 1 - ai E 1 (mod 2) for i = 1, 2, . . ., k - 1. [Here 
k is variable, but of course 1 < k < n. For example, the three allowable se-
quences for n = 2 are (1), (2), and (1,2).] 

B-523 Proposed by Laszlo Cseh and Imre Merenyi, Cluj, Romania 

Let p, aQ, a-t, . . . , an be integers with p a positive prime such that 

gcd(a0, p) = 1 = gcd(an, p). 
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Prove that in {0, 1, ..., p - 1} there are as many solutions of the congruence 

anxn + an_1xn~1 + ••• + ciyZ + a0 = 0 (mod p) 

as there are of the congruence 

a0xn + axxn~x + '" + (Zn-iX + a = 0 (mod p). 

B-524 Proposed by Herta T. Freitag, Roanoke, VA 

Let Sn = Ffn_1 + FnFn.1(F2n_1 + Fn2 ) + 3FnFn + 1(F2n_1 + F„F„_i). Show that 
Sn is the square of a Fibonacci number. 

B-525 Proposed by Walter Blumberg, Coral Springs, FL 

Let x,y, and z be positive integers such that 2X - 1 = £/s and # >• 1. Prove 
that z = 1. 

SOLUTIONS 

Fibonacci-Lucas Centroid 

B-496 Proposed by Stanley Rabinowitz, Digital Equip. Corp., Merrimack, NH 

Show that the centroid of the triangle whose vertices have coordinates 

(Fn, Ln), (Fn+1, Ln+1), (Fn + 6, £n + 6) 

is (Fn + h, Ln+h). 

Solution, independently, by Walter Blumberg, Coral Springs, FL; Wray G. Brady, 
Slippery Rock, PA; Paul S. Bruckman, Sacramento, CA; Laszlo Cseh, Cluj, Romania; 
Leonard Dresel, Reading, England; Herta T. Freitag, Roanoke, VA; L. Kuipers, 
Switzerland; Stanley Rabinowitz, Merimack, NH; Imre Merenyi, Cluj, Romania; 
John W. Milsom, Butler, PA; Bob Prielipp, Oshkosh, WI; Sahib Singh, Clarion, PA; 
Lawrence Somer, Washington, CD; Gregory Wulczyn, Lewisburg, PA. 

The coordinates (x, y) of the centroid are given by 

3x = Fn + Fn+1 + Fn+6 
= Fn + 2 + Fn + h + Fn+5 

~ ^n + 2 "*" ^n+h + ^n+3 ^n + h 

and similarly, 
3y = Ln + Ln+1 + Ln+6 

= 3Ln+ h. 
Hence, the centroid is (Fn+h, Ln+h). 

Area of a Fibonacci-Lucas Triangle 

B-kS7 Proposed by Stanley Rabinowitz, Digital Equip. Corp., Merrimack, NH 

For d an odd positive integer, find the area of the triangle with vertices 
(Fn9 Ln), (Fn + di Ln+d), and (Fn + 2d> Ln+2d). 
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Solution by Paul S. Bruckman, Sacramento, CA 

By means of a well-known determinant formula,the area of the given triangle 
is given by 

1 II 

(In the above expression, the inner bar is the determinant symbol, the outer bar 
represents absolute value.) Then 

A = -2\(Fn + 2dLn + d " Fn + d^n + ld} ~ (Fn + 2d^n ~ FnLn + 2d^ + (Fn+d^n ~ FnLn + d ) \ . 

Using the relation 

FULV - FVLU = 2(-l)vFu_v, (2) 

this becomes: 

A = (-l)n + dFd - {-l)nF2d + (-l)nFd = (.-l)dFd - F2d + Fd> 

which equals F2d when d is odd (and equals F2d - 2Fd when d is even). 

Also solved by Walter Blumberg, Wray G. Brady, Leonard Dresel, Herta T. Freltag, 
L0 Kuipers, Graham Lord, John W. Milsom, Bob Prielipp, Sahib Singh, Gregory Wul-
czyn, and the proposer. 

Fibonacci Recursions Modulo 10 

B-498 Proposed by Herta T. Freitag, Roanoke, VA 

Characterize the positive integers k such that, for all positive integers n, 
Fn +

 Fn + k = Fn + 2k (mod 10). 

Solution by Leonard Dresel, University of Reading, England 

When k is odd, we have the identity Fm+k - Fm„k = FmLk. Applying this with 
m = n + k9 we have Fm = FmLk (mod 10), and this will be satisfied whenever 
Lk = 1 (mod 10). 

On the other hand, when k is even, we have Fm + k - Fm_k = LmFk , and it is 
not possible to satisfy the given recurrence for even k. 

Returning to the case of odd k, the condition Lk = 1 (mod 10) is equivalent 
to 

Lk = 1 (mod 2) and Lk = 1 (mod 5). 

The first condition implies that k is not divisible by 3; with the help of the 
Binet formula for Lki the second condition reduces to 2 " = 1 (mod 5), which 
gives that k - 1 in a multiple of 4. Combining these results, we have 

k = 12£ + 1 ov k = 12t + 5 (t = 0, 1, 2, 3, . . . ) . 

Also solved by Paul S. Bruckman, Laszlo Cseh, L. Kuipers, Imre Merenyi, Bob 
Prielipp, Sahib Singh, Lawrence Somer, Gregory Wulczyn, and the proposer. 

A=i 

i i 
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Lucas Recursions Modulo 12 

B-499 Proposed by Herta T. Freitag, Roanoke, VA 

Do the Lucas numbers analogue of B-498. 

Solution by Leonard Dresel, University of Reading, England 

We have the identit ies Lm + k — Lm- k — LmLk when k is odd, and Lm + k — Lm-k — 
5FmFk when k is even. Hence, putting m = n + k9 the relation Ln + Ln + k E Ln + 2k 
(mod 10) leads, for odd k, to Lm ~ LmLk (mod 10), so that we require Lk= 1 (mod 
10), leading to the same values of k as in B-498 above. 

Also solved by Paul S. Bruckman, Laszlo Cseh, L. Kuipers, Imre Merenyi, Bob 
Prielipp, Lawrence Somer, Gregory Wulczyn, and the proposer. 

Two Kinds of Divisibility 

B-500 Proposed by Philip L. Mana, Albuquerque, NM 

Let A(n) and B(n) be polynomials of positive degree with integer coefficients 
such that B(k)\A(k) for all integers k. Must there exist a nonzero integer h 
and a polynomial C(n) with integer coefficients such that hA(n) = 5(n)C(n)? 

Solution by the proposer. 

Using the division algorithm and multiplying by an integer In so as to make 
all coefficients into integers, one has 

hA(n) = Q(n)B(n) + R(n), (*) 

where Q(n) and R(n) are polynomials in n with integral coefficients and R(n) is 
either the zero polynomial or has degree less than B(n) . The hypothesis that 
B(n)\A(n) and (*) imply that B(n)\R(n) for all integers n. If R(n) is not the 
zero polynomial, R(n) has lower degree than B(n) and so 

lim [R(n)/B(n)] = 0; 

also R(n) is zero for only a finite number of integers n. Thus 0 < R(n)/B(n) < 1 
for some large enough n9 contradicting B(n)\R(n). HenceR(n) is the zero poly-
nomial and (?v) shows that the answer is "yes." 

Also solved by Paul S. Bruckman and L. Kuipers. 

Doubling Back on a Sequence 

B-501 Proposed by J. O. Shallit & J. P. Yamron, U.C. Berkeley, CA 

Let a be the mapping that sends a sequence X = (xl9 x2, ..., x , ) of length 
2k to the sequence of length k, 

(X\A ) — \X -^X 2k 9 2 2k - 1 ' •••> k k + 1 ) * 

Let V = (1, 2, 3, ..., 2h), a2(7) = a(a(F)), etc. Prove that a(7), a2(7), ..., 
a ~ (7) are all strictly increasing sequences. 
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Solution by Leonard Dresel, University of Reading, England 

Suppose the nubmers als a2, a3, ah form a strictly increasing sequence, 
subject to the condition a1 + ah = a2 + a3 = S, then 

(ah - a x ) 2 > (a3 - a 2 ) 2 

(ah - a x ) 2 = (a3 + a 2 ) 2 
and 

gives 
-4ar+a1 > -4a3a2 

hence, 
a^^. < a2a3. 

Now any two consecutive terms of a(7) are of the form a^^, a2a3, with 

ax + a^ = a3 + a2 = 1 + 2h, 

so that it follows that a(7) is a strictly increasing sequence. 
Next, consider a (7) . To avoid a notational forest, we shall apply our 

method to the specific case where h = 4, with 7 = (1, 2, 3, . .., 16). Then, 
using a dot to denote multiplication, we have 

a(7) = (1-16, 2 • 15, 3-14, ..., 8-9) 

a2 (T) = (1 • 16 • 8 • 9, 2 • 15 • 7 • 10, ..., 4 • 13 • 5 • 12) 
= (1 • 8 • 9 • 16, 2 • 7 • 10 • 15, . .., 4 • 5 • 12 • 13) 
= (b1 • cls b2 • e2, ..., 2^ • e4) 

where 
(bis i2, Z>3, \ ) = a(l, 2, 3, ..., 8) 

and 
(o13 c2, c3, ch) = a(9, 10, 11, ..., 16). 

By our previous argument, b± is strictly increasing, and similarly c^ is. Thus 
a2(7) = (b%Ci) is a strictly increasing sequence. Similarly, we can show that 
a3(7) = (d1e1f1g19 d2e2f2g2), where 

(d2, d2) = a(l, 2, 3, 4), (el5 e2) = a(5, 6, 7, 8), etc., 

is strictly increasing. The above arguments can be generalized to apply to any 
value of h, 

Also solved by Paul S. Bruckman, L. Kuipers, and the proposers. 

1984] 187 


