PETER HAGIS, JR.

Temple University, Philadelphia, PA 19122 (Submitted July 1982)

INTRODUCTION

Throughout this paper n and k will denote positive integers that exceed 2. With or without a subscript, p will denote a prime, and the i^{th} odd prime will be symbolized by P_i . If d is a positive integer such that $d \mid n$ and (d, n/d) = 1, then d is said to be a unitary divisor of n. The sum of all of the unitary divisors of n is symbolized by $\sigma^*(n)$. If $n = p_1^{a_1} p_2^{a_2} \dots p_s^{a_s}$, where the p_i are distinct and $a_i > 0$ for all i, then it is easy to see that

$$\sigma^{*}(n) = \prod_{i=1}^{s} (1 + p_{i}^{a_{i}}) \tag{1}$$

and that $\sigma^{\boldsymbol{\star}}$ is a multiplicative function.

Subbarao and Warren [2] have defined n to be a unitary perfect number if $\sigma^*(n) = 2n$. Five unitary perfect numbers have been found (see [3]). The smallest is 6, the largest has 24 digits. Harris and Subbarao [1] have defined n to be a unitary multiperfect number (UMP) if $\sigma^*(n) = kn$, where k > 2. We know of no example of a unitary multiperfect number and, as we shall see, if one exists it must be very large.

Suppose first that $n=p_1^{a_1}p_2^{a_2}\ldots p_s^{a_s}$, where n is odd and $\sigma^*(n)=kn$. Assume that $k=2^cM$, where $2\not M$ and $c\geqslant 0$. Then, since

$$2 | (1 + p_i^{a_i})$$
 for $i = 1, 2, ..., s$,

it follows from (1) that $s \leq c$. Also,

$$2^{c}M = k = \sigma * (n)/n = \prod_{i=1}^{s} (1 + p_{i}^{-a_{i}}) < 2^{s} \leq 2^{c},$$

which is a contradiction. We have proved

Theorem 1: There are no odd unitary multiperfect numbers.

This result was stated in [1]. Its proof is included here for the sake of completeness.

2. LOWER BOUNDS FOR UNITARY MULTIPERFECT NUMBERS

We assume from now on that

$$n = 2^{\alpha} \prod_{i=1}^{t} p_i^{a_i}, \text{ where } \alpha a_i > 0 \text{ and } 3 \leq p_1 < p_2 < \dots < p_t.$$
 (2)

Also, $\sigma^*(n) = kn$, so that

$$k = \sigma^*(n)/n = (1 + 2^{-\alpha}) \prod_{i=1}^t (1 + p_i^{-a_i}).$$
 (3)

140 [May

Since $2 \mid (1+p_i^{\alpha_i})$, it follows from (1) and (2) that $t \leq \alpha+2$ if k=4, and $t \leq \alpha+1$ if k=6. Therefore, since $1+x^{-1}$ is monotonic decreasing for x>0, it follows from (3), if k=4 or 6, that

$$4 \leq k \leq (1+2^{-\alpha}) \prod_{i=1}^{t} (1+P_i^{-1}) \leq (1+2^{-\alpha}) \prod_{i=1}^{\alpha+2} (1+P_i^{-1}) = F(\alpha).$$

A computer run showed that $F(\alpha) \le 4$ for $\alpha \le 48$. Therefore, $\alpha \ge 49$ if k = 4 or 6. Also, from (3),

$$4 \le k \le (1 + 2^{-49}) \prod_{i=1}^{t} (1 + P_i^{-1}) = G(t).$$

Since $G(50) \le 4$, we see that $t \ge 51$. Thus

$$n \ge 2^{49} \prod_{i=1}^{51} P_i \ge 10^{110}$$
 if $k = 4$ or 6.

If $k \ge 8$, then

$$8 \le k \le 1.5 \prod_{i=1}^{t} (1 + P_i^{-1}) = H(t).$$

A computer run showed that $H(t) \le 8$ for $t \le 246$. Therefore, if $k \ge 8$, $t \ge 247$ and

$$n \ge 2 \prod_{i=1}^{247} P_i > 10^{663}$$
.

Now suppose that k is odd and $k \ge 5$. Since $2 \mid (1 + p_i^{a_i})$, we see that $t \le \alpha$. Also, from (3),

$$5 \le k \le (1 + 2^{-\alpha}) \prod_{i=1}^{\alpha} (1 + P_i^{-1}) = J(\alpha);$$

and since $J(\alpha) < 5$ for $\alpha \le 165$, it follows that $\alpha \ge 166$. Moreover,

$$5 \le k \le (1 + 2^{-166}) \prod_{i=1}^{t} (1 + P_i^{-1}) = K(t),$$

and since $\mathit{K}(165) < 5$, we see that $t \ge 166$. Therefore, if $k \ge 5$ and k is odd, then

$$n \ge 2^{166} \prod_{i=1}^{166} P_i > 10^{461}$$
.

Theorem 2: Suppose that n is a UMP with t distinct odd prime factors and that $\sigma^*(n) = kn$. If $k \ge 8$, then $n > 10^{663}$ and $t \ge 247$. If k = 4 or 6, then $n > 10^{110}$, $t \ge 51$, and $2^{49} | n$. If k is odd and $k \ge 5$, then $n > 10^{461}$, $t \ge 166$, and $2^{166} | n$.

3. UNITARY TRIPERFECT NUMBERS

If $\sigma^*(n)=3n$, n will be said to be a unitary triperfect number. Throughout this section we assume that n is such a number. We shall denote by q_i the i^{th} prime congruent to 1 modulo 3 and by Q_i the i^{th} prime congruent to 2 modulo 3. If $3 \not \mid n$, then $t \leq \alpha$ and, from (3),

$$3 \le (1 + 2^{-\alpha}) \prod_{i=2}^{\alpha+1} (1 + P_i^{-1}) = L(\alpha).$$

Since $L(\alpha) \le 3$ for $\alpha \le 49$, we see that $\alpha \ge 50$. Also,

$$3 \le (1 + 2^{-50}) \prod_{i=2}^{t+1} (1 + P_i^{-1}) = M(t),$$

and since $M(49) \le 3$, it follows that $t \ge 50$. And, finally, since $3 \mid \sigma^*(n)$ and $3 \mid (1+p)$ if $p = 2 \pmod{3}$, we see that

$$n \ge 2^{50} 5^2 11^2 17^2 23 \prod_{i=1}^{46} q_i \ge 10^{105}$$
. (Note that $q_{46} = 523$.)

If 3|n, then $t \leq \alpha - 1$, since

$$3 \cdot 2^{\alpha} \prod_{i=1}^{t} p_i^{a_i} = (1 + 2^{\alpha})(4) \prod_{i=2}^{t} (1 + p_i^{a_i}).$$

From (3)

$$3 = (1 + 2^{-\alpha})(4/3) \prod_{i=2}^{t} (1 + p_i^{-\alpha_i}) \le (1 + 2^{-\alpha}) \prod_{i=1}^{\alpha-1} (1 + p_i^{-1}) = N(\alpha),$$

and since $N(\alpha) \le 3$ for $\alpha \le 16$, we see that $\alpha \ge 17$. Also, $3^2 \| \sigma^*(n)$ and $3 \| (1+p)$ if $p \equiv 2 \pmod{3}$. Therefore, since $1+x^{-1}$ is monotonic decreasing for $x \ge 0$, and since

$$(1 + 2^{-17})(4/3)(6/5)(12/11)(290/17^2) \prod_{i=1}^{40} (1 + q_i^{-1}) \le 3,$$

it follows from (3) that $t \ge 45$. Thus, $\alpha \ge 46$ and

$$n \ge 2^{46} \cdot 3 \cdot 5 \cdot 11 \cdot 17^2 \prod_{i=1}^{41} q_i > 10^{107}$$
. (Note that $q_{41} = 439$.)

If $3^2 || n$, then $t \leq \alpha$ and, from (3),

$$3 \le (1 + 2^{-\alpha})(10/9) \prod_{i=2}^{\alpha} (1 + P^{-1}) = R(\alpha).$$

 $\alpha \ge 32$, since $R(\alpha) \le 3$ for $\alpha \le 31$. Also, $3^3 \| \sigma^*(n)$ and 3 | (1+p) if $p \equiv 2 \pmod{3}$. Therefore, since

$$(1 + 2^{-32})(10/9)(6/5)(12/11)(24/23)(290/17^2)\prod_{j=5}^{8}(1 + Q_j^{-2})\prod_{i=1}^{227}(1 + q_i^{-1}) \le 3,$$

we see that $t \geq$ 237. (Q_8 = 53 and q_{227} = 3307.) Thus, $\alpha \geq$ 237 and

$$n \ge 2^{237} (5 \cdot 11 \cdot 23) (3 \cdot 17 \cdot 29 \cdot 41 \cdot 47 \cdot 53)^2 \prod_{i=1}^{228} q_i > 10^{779}.$$

If $3^3 || n$, then $t \leq \alpha - 1$ and

$$3 \le (1 + 2^{-\alpha})(28/27) \prod_{i=2}^{\alpha-1} (1 + P_i^{-1}) = S(\alpha).$$

Since $S(\alpha) \le 3$ for $\alpha \le 43$, we see that $\alpha \ge 44$. Also, $3^4 \| \sigma^*(n)$ and 3 | (1+p) if $p \equiv 2 \pmod{3}$. Therefore, since

$$(1 + 2^{-44})(28/27)(6/5)(12/11)(18/17)\prod_{i=4}^{12}(1 + Q_i^{-2})\prod_{i=1}^{530}(1 + q_i^{-1}) \le 3,$$

we conclude that $t \geq$ 544. (Q_{12} = 89 and Q_{530} = 8623.) Thus, $\alpha \geq$ 545 and

$$n \ge 2^{545}3^3 \cdot 5 \cdot 11 \cdot 17 \prod_{j=4}^{12} Q_j^2 \prod_{i=1}^{531} q_i \ge 10^{2026}$$
.

If $3^4 \mid n$, then $t \leq \alpha$ and

$$3 \le (1 + 2^{-\alpha}) (82/81) \prod_{i=2}^{\alpha} (1 + P_i^{-1}) = T(\alpha).$$

Since $T(\alpha) < 3$ for $\alpha \le 47$, it follows that $\alpha \ge 48$. From (3),

$$3 \le (1 + 2^{-48})(82/81) \prod_{i=2}^{t} (1 + P_i^{-1}) = U(t),$$

and since U(47) < 3, we conclude that $t \ge 48$ and

$$n \ge 2^{48} 3^4 \prod_{i=2}^{48} P_i > 10^{102}$$
.

We summarize these results in the following theorem.

Theorem 3: Suppose that n is a unitary triperfect number with t distinct odd prime factors. Then $t \ge 45$, $n > 10^{102}$, and $2^{46} | n$. If $3^2 | n$, then $t \ge 237$, $n > 10^{779}$, and $2^{237} | n$. If $3^3 | n$, then $t \ge 544$, $n > 10^{2026}$, and $2^{545} | n$.

REFERENCES

- 1. V. C. Harris & M. V. Subbarao. "Unitary Multiperfect Numbers." *Notices of the A.M.S.* 21, no. 4 (1972):A-435.
- 2. M. V. Subbarao & L. J. Warren. "Unitary Perfect Numbers." *Canad. Math. Bull.* 9, no. 2 (1966):147-53.
- Bull. 9, no. 2 (1966):147-53.
 3. C. R. Wall. "The Fifth Unitary Perfect Number." Canad. Math. Bull. 18. no. 1 (1975):115-22.
