LOWER BOUNDS FOR UNITARY MULTIPERFECT NUMBERS

PETER HAGIS, JR. Temple University, Philadelphia, PA 19122
(Submitted July 1982)

1. INTRODUCTION

Throughout this paper n and k will denote positive integers that exceed 2. With or without a subscript, p will denote a prime, and the $i^{\text {th }}$ odd prime will be symbolized by P_{i}. If d is a positive integer such that $d \mid n$ and $(d, n / d)=1$, then d is said to be a unitary divisor of n. The sum of all of the unitary divisors of n is symbolized by $\sigma^{*}(n)$. If $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{s}^{a_{s}}$, where the p_{i} are distinct and $\alpha_{i}>0$ for all i, then it is easy to see that

$$
\begin{equation*}
\sigma^{*}(n)=\prod_{i=1}^{s}\left(1+p_{i}^{a_{i}}\right) \tag{1}
\end{equation*}
$$

and that σ^{*} is a multiplicative function.
Subbarao and Warren [2] have defined n to be a unitary perfect number if $\sigma^{*}(n)=2 n$. Five unitary perfect numbers have been found (see [3]). The smallest is 6, the largest has 24 digits. Harris and Subbarao [l] have defined n to be a unitary multiperfect number (UMP) if $\sigma^{*}(n)=k n$, where $k>2$. We know of no example of a unitary multiperfect number and, as we shall see, if one exists it must be very large.

Suppose first that $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{s}^{a_{s}}$, where n is odd and $\sigma^{*}(n)=k n$. Assume that $k=2^{c} M$, where $2 \nmid M$ and $c \geqslant 0$. Then, since

$$
2 \mid\left(1+p_{i}^{a_{i}}\right) \text { for } i=1,2, \ldots, s
$$

it follows from (1) that $s \leqslant c$. Also,

$$
2^{c} M=k=\sigma^{*}(n) / n=\prod_{i=1}^{s}\left(1+p_{i}^{-a_{i}}\right)<2^{s} \leqslant 2^{c}
$$

which is a contradiction. We have proved
Theorem 1: There are no odd unitary multiperfect numbers.
This result was stated in [1]. Its proof is included here for the sake of completeness.
2. LOWER BOUNDS FOR UNITARY MULTIPERFECT NUMBERS

We assume from now on that

$$
\begin{equation*}
n=2^{\alpha} \prod_{i=1}^{t} p_{i}^{a_{i}}, \text { where } \alpha a_{i}>0 \text { and } 3 \leqslant p_{1}<p_{2}<\cdots<p_{t} \tag{2}
\end{equation*}
$$

A1so, $\sigma^{*}(n)=k n$, so that

$$
\begin{equation*}
k=\sigma^{*}(n) / n=\left(1+2^{-\alpha}\right) \prod_{i=1}^{t}\left(1+p_{i}^{-a_{i}}\right) \tag{3}
\end{equation*}
$$

Since $2 \mid\left(1+p_{i}^{a_{i}}\right)$, it follows from (1) and (2) that $t \leqslant \alpha+2$ if $k=4$, and
$t \leqslant \alpha+1$ if $k=6$. Therefore, since $1+x^{-1}$ is monotonic it follows from (3), if $k=4$ or 6 , that

$$
4 \leqslant k \leqslant\left(1+2^{-\alpha}\right) \prod_{i=1}^{t}\left(1+P_{i}^{-1}\right) \leqslant\left(1+2^{-\alpha}\right) \prod_{i=1}^{\alpha+2}\left(1+P_{i}^{-1}\right)=F(\alpha)
$$

A computer run showed that $F(\alpha)<4$ for $\alpha \leqslant 48$. Therefore, $\alpha \geqslant 49$ if $k=4$ or 6. Also, from (3),

$$
4 \leqslant k \leqslant\left(1+2^{-49}\right) \prod_{i=1}^{t}\left(1+P_{i}^{-1}\right)=G(t)
$$

Since $G(50)<4$, we see that $t \geqslant 51$. Thus

If $k \geqslant 8$, then

$$
n \geqslant 2^{49} \prod_{i=1}^{51} P_{i}>10^{110} \text { if } k=4 \text { or } 6
$$

$$
8 \leqslant k \leqslant 1.5 \prod_{i=1}^{t}\left(1+P_{i}^{-1}\right)=H(t)
$$

A computer run showed that $H(t)<8$ for $t \leqslant 246$. Therefore, if $k \geqslant 8, t \geqslant 247$ and

$$
n \geqslant 2 \prod_{i=1}^{247} P_{i}>10^{663}
$$

Now suppose that k is odd and $k \geqslant 5$. Since $2 \mid\left(1+p_{i}^{a_{i}}\right)$, we see that $t \leqslant \alpha$. Also, from (3),

$$
5 \leqslant k \leqslant\left(1+2^{-\alpha}\right) \prod_{i=1}^{\alpha}\left(1+P_{i}^{-1}\right)=J(\alpha)
$$

and since $J(\alpha)<5$ for $\alpha \leqslant 165$, it follows that $\alpha \geqslant 166$. Moreover,

$$
5 \leqslant k \leqslant\left(1+2^{-166}\right) \prod_{i=1}^{t}\left(1+P_{i}^{-1}\right)=K(t)
$$

and since $K(165)<5$, we see that $t \geqslant 166$. Therefore, if $k \geqslant 5$ and k is odd, then

$$
n \geqslant 2^{166} \prod_{i=1}^{166} P_{i}>10^{461}
$$

Theorem 2: Suppose that n is a UMP with t distinct odd prime factors and that $\sigma^{*}(n)=k n$. If $k \geqslant 8$, then $n>10^{663}$ and $t \geqslant 247$. If $k=4$ or 6 , then $n>10^{110}$, $t \geqslant 51$, and $2^{49} \mid n$. If k is odd and $k \geqslant 5$, then $n>10^{461}, t \geqslant 166$, and $2^{166} \mid n$.

3. UNITARY TRIPERFECT NUMBERS

If $\sigma^{*}(n)=3 n$, n will be said to be a unitary triperfect number. Throughout this section we assume that n is such a number. We shall denote by q_{i} the $i^{\text {th }}$ prime congruent to 1 modulo 3 and by Q_{i} the $i^{\text {th }}$ prime congruent to 2 modu1o 3 . If $3 \nmid n$, then $t \leqslant \alpha$ and, from (3),

$$
3 \leqslant\left(1+2^{-\alpha}\right) \prod_{i=2}^{\alpha+1}\left(1+P_{i}^{-1}\right)=L(\alpha)
$$

LOWER BOUNDS FOR UNITARY MULTIPERFECT NUMBERS

Since $L(\alpha)<3$ for $\alpha \leqslant 49$, we see that $\alpha \geqslant 50$. Also,

$$
3 \leqslant\left(1+2^{-50}\right) \prod_{i=2}^{t+1}\left(1+P_{i}^{-1}\right)=M(t)
$$

and since $M(49)<3$, it follows that $t \geqslant 50$. And, finally, since $3 \| \sigma^{*}(n)$ and $3 \mid(1+p)$ if $p \equiv 2(\bmod 3)$, we see that

$$
\left.n \geqslant 2^{50} 5^{2} 11^{2} 17^{2} 23 \prod_{i=1}^{46} q_{i}>10^{105} . \quad \text { (Note that } q_{46}=523 .\right)
$$

If $3 \| n$, then $t \leqslant \alpha-1$, since

From (3),

$$
3 \cdot 2^{\alpha} \prod_{i=1}^{t} p_{i}^{a_{i}}=\left(1+2^{\alpha}\right)(4) \prod_{i=2}^{t}\left(1+p_{i}^{a_{i}}\right)
$$

$$
3=\left(1+2^{-\alpha}\right)(4 / 3) \prod_{i=2}^{t}\left(1+p_{i}^{-\alpha_{i}}\right) \leqslant\left(1+2^{-\alpha}\right) \prod_{i=1}^{\alpha-1}\left(1+P_{i}^{-1}\right)=N(\alpha)
$$

and since $N(\alpha)<3$ for $\alpha \leqslant 16$, we see that $\alpha \geqslant 17$. A1so, $3^{2} \| \sigma^{*}(n)$ and $3 \mid(1+p)$ if $p \equiv 2(\bmod 3)$. Therefore, since $1+x^{-1}$ is monotonic decreasing for $x>0$, and since

$$
\left(1+2^{-17}\right)(4 / 3)(6 / 5)(12 / 11)\left(290 / 17^{2}\right) \prod_{i=1}^{40}\left(1+q_{i}^{-1}\right)<3
$$

it follows from (3) that $t \geqslant 45$. Thus, $\alpha \geqslant 46$ and

$$
n \geqslant 2^{46} 3 \cdot 5 \cdot 11 \cdot 17^{2} \prod_{i=1}^{41} q_{i}>10^{107} . \quad\left(\text { Note that } q_{41}=439 .\right)
$$

If $3^{2} \| n$, then $t \leqslant \alpha$ and, from (3),

$$
3 \leqslant\left(1+2^{-\alpha}\right)(10 / 9) \prod_{i=2}^{\alpha}\left(1+P^{-1}\right)=R(\alpha)
$$

$\alpha \geqslant 32$, since $R(\alpha)<3$ for $\alpha \leqslant 31$. A1so, $3^{3} \| \sigma^{*}(n)$ and $3 \mid(1+p)$ if $p \equiv 2$ (mod 3). Therefore, since

$$
\left(1+2^{-32}\right)(10 / 9)(6 / 5)(12 / 11)(24 / 23)\left(290 / 17^{2}\right) \prod_{j=5}^{8}\left(1+Q_{j}^{-2}\right) \prod_{i=1}^{227}\left(1+q_{i}^{-1}\right)<3
$$

we see that $t \geqslant 237 . \quad\left(Q_{8}=53\right.$ and $\left.q_{227}=3307.\right)$ Thus, $\alpha \geqslant 237$ and

$$
n \geqslant 2^{237}(5 \cdot 11 \cdot 23)(3 \cdot 17 \cdot 29 \cdot 41 \cdot 47 \cdot 53)^{2} \prod_{i=1}^{228} q_{i}>10^{779}
$$

If $3^{3} \| n$, then $t \leqslant \alpha-1$ and

$$
3 \leqslant\left(1+2^{-\alpha}\right)(28 / 27) \prod_{i=2}^{\alpha-1}\left(1+P_{i}^{-1}\right)=S(\alpha)
$$

Since $S(\alpha)<3$ for $\alpha \leqslant 43$, we see that $\alpha \geqslant 44$. Also, $3^{4} \| \sigma^{*}(n)$ and $3 \mid(1+p)$ if $p \equiv 2(\bmod 3)$. Therefore, since

$$
\left(1+2^{-44}\right)(28 / 27)(6 / 5)(12 / 11)(18 / 17) \prod_{j=4}^{12}\left(1+Q_{j}^{-2}\right) \prod_{i=1}^{530}\left(1+q_{i}^{-1}\right)<3
$$

we conclude that $t \geqslant 544 . \quad\left(Q_{12}=89\right.$ and $\left.q_{530}=8623.\right)$ Thus, $\alpha \geqslant 545$ and

$$
n \geqslant 2^{545} 3^{3} \cdot 5 \cdot 11 \cdot 17 \prod_{j=4}^{12} Q_{j}^{2} \prod_{i=1}^{531} q_{i}>10^{2026}
$$

If $3^{4} \mid n$, then $t \leqslant \alpha$ and

$$
3 \leqslant\left(1+2^{-\alpha}\right)(82 / 81) \prod_{i=2}^{\alpha}\left(1+P_{i}^{-1}\right)=T(\alpha)
$$

Since $T(\alpha)<3$ for $\alpha \leqslant 47$, it follows that $\alpha \geqslant 48$. From (3),

$$
3 \leqslant\left(1+2^{-48}\right)(82 / 81) \prod_{i=2}^{t}\left(1+P_{i}^{-1}\right)=U(t)
$$

and since $U(47)<3$, we conclude that $t \geqslant 48$ and

$$
n \geqslant 2^{48} 3^{4} \prod_{i=2}^{48} P_{i}>10^{102}
$$

We summarize these results in the following theorem.
Theorem 3: Suppose that n is a unitary triperfect number with t distinct odd prime factors. Then $t \geqslant 45, n>10^{102}$, and $2^{46} \mid n$. If $3^{2} \| n$, then $t \geqslant 237, n>$ 10^{779}, and $2^{237} \mid n$. If $3^{3} \| n$, then $t \geqslant 544, n>10^{2026}$, and $2^{545} \mid n$.

REFERENCES

1. V. C. Harris \& M. V. Subbarao. "Unitary Multiperfect Numbers." Notices of the A.M.S. 21, no. 4 (1972):A-435.
2. M. V. Subbarao \& L. J. Warren. "Unitary Perfect Numbers." Canad. Math. BuてL. 9, no. 2 (1966):147-53.
3. C. R. Wall. "The Fifth Unitary Perfect Number." Canad. Math. Bull. 18. no. 1 (1975): 115-22.
