WIEFERICHS AND THE PROBLEM $z(p^2) = z(p)$

JOSEPH J. HEED

Norwich University, Northfield, VT 05663 (Submitted January 1982)

INTRODUCTION

1. Let z(n) be the index of the first Fibonacci number divisible by the natural number *n*. At this writing, there has not been found a prime *p* whose square enters the Fibonacci sequence at the same index as does *p*. This does not occur for $p < 10^6$ [2].

The problem is related to the following one. For what relatively prime p, b, is it true that $p^2 | b^{p-1} - 1$? Apparently, this question was first asked by Abel. Dickson [1] devotes a chapter to related results. For b = 2, the conforming p^2 values are the well-known Wieferich squares, which enter in the solution of Fermat's Last Theorem. The only two Wieferich squares with $p < 3 \cdot 10^9$ are 1093^2 and 3511^2 [6, p. 229]. These phenomena are rare but, to a degree, predictable. An investigation of this predictability sheds some light on the Fibonacci phenomenon.

2.1 Notation. Define $n \| b^x - 1$ as meaning $n \| b^x - 1$, and $n \| b^y - 1$ for y < x (i.e., b belongs to the exponent x, modulo n).

2.2 The following are well known. For p prime, (b, p) = 1; if $p || b^{\alpha} - 1$, then $p | b^{\beta} - 1$ if and only if $\beta = k \cdot \alpha$. Since $p | b^{p-1} - 1$ (Fermat), it follows that $\alpha | p - 1$. For q prime, (b, q) = 1; if $q || b^{\gamma} - 1$, then $pq || b^{\operatorname{cm}(\alpha, \gamma)} - 1$. The multiplicative properties are similar to those of the Euler ϕ function. Indeed, $p^2 | b^{p\alpha} - 1$ as $\phi(p^2) = p\phi(p)$. However, here we have a deviation: $p^2 || b^{p\alpha} - 1$, unless $p^2 || b^{\alpha} - 1$. (In terms of decimals of reciprocals of integers, the first prime > 3, such that $1/p^2$ has a period the same length as 1/p, i.e., $p^2 || 10^{p-1}$, is 487. Its period is of length 486.) It can be shown that this deviation occurs if and only if $p^2 | b^{p-1} - 1$. If such is the case, and imitating Shanks's flair for coinage of such terms, we say p is a wieferich, modulo b.

2.3 Consider the solutions to $x^{p-1} \equiv 1 \pmod{p^2}$. Gauss [3, art. 85] assures us that there are p - 1 distinct solutions, x, between 1 and $p^2 - 1$. For each b, $1 \leq b \leq p$, there is a distinct k such that

$$(b + kp)^{p-1} \equiv 1 \pmod{p^2}$$
.

These provide the p - 1 solutions:

$$(b + kp)^{p-1} - 1 \equiv b^{p-1} - 1 + (p - 1)b^{p-2}kp \pmod{p^2}$$

and

$$\left(\frac{b^{p-1}-1}{p}\right) - b^{-1}k \equiv 0 \pmod{p}, \text{ yielding } k \equiv b\left(\frac{b^{p-1}-1}{p}\right) \pmod{p}.$$

If x is a solution, so too is $p^2 - x$. x = 1 is always a solution; therefore, (p - 3)/2 solutions are scattered from x = 2 to $x = (p^2 - 1)/2$. If randomly distributed, the probability that a particular x = b is a solution is

[May

116

WIEFERICHS AND THE PROBLEM $z(p^2) = z(p)$

 $(p-3)/(p^2-3)$. Holding *b* fixed and letting *p* range, the expected number of solutions encountered $\leq P$ is $\sum_{p=0}^{p}(p-3)/(p^2-3)$. Since the series is divergent $(\sum_{p\leq x}1/p = \ln \ln x + c + O(1/\log x)$ [5, Th. 50, p. 120]), but diverges slowly, the relative scarcity of these wieferichs, modulo *b*, is not surprising.

THE MAIN THEOREMS

3.1 In [4], information about the entry points of the Fibonacci sequence was obtained by imbedding the sequence in a family of sequences with similar properties. Specifically, let $\{\Gamma_n\}$ be a linear recursive sequence with n^{th} term given by

$$\Gamma_{n}(c, q) = \frac{\Psi^{n} - \overline{\Psi}^{n}}{R} = \begin{cases} \frac{(c + \sqrt{q})^{n} - (c - \sqrt{q})^{n}}{2\sqrt{q}} & \text{for } q \neq c^{2} \pmod{4} \\ \frac{\left(\frac{c + \sqrt{q}}{2}\right)^{n} - \left(\frac{c - \sqrt{q}}{2}\right)^{n}}{\sqrt{q}} & \text{for } q \equiv c^{2} \pmod{4} \end{cases}$$

yielding the sequences defined by

$$\Gamma_{n} = \begin{cases} 2c\Gamma_{n-1} + (q - c^{2})\Gamma_{n-2} \\ c\Gamma_{n-1} + \frac{q - c^{2}}{4}\Gamma_{n-2} \end{cases}$$

with initial values 1, 2c or 1, c. For c = 1, q = 5, we have the Fibonacci sequence.

Let e = (q/p) be the Legendre symbol.

With $q \not\equiv c^2$, $c \not\equiv 0$, $q \not\equiv 0 \pmod{p}$, we have $p \mid \Gamma_{p-e}$.

If
$$p | \Gamma_{\alpha}$$
, then $p | \Gamma_{\beta}$ if and only if $\beta = k\alpha$. Also, $\alpha | p - e$, [4].

3.2 Theorem: Let $p \| \Gamma_{\alpha}$. Then, $p^2 \| \Gamma_{\alpha}$ if and only if $p^2 | \Gamma_{p-e}$ (paralleling the result mentioned in ¶2.2). Proof is by means of Lemmas 3.2.1, 3.2.2, and 3.2.3 below.

3.2.1 Lemma: If $p^2 \| \Gamma_{\alpha}$, then $p^2 | \Gamma_x$ if and only if x is a multiple of α . Consider:

$$\Gamma_{k\alpha} = \frac{\Psi^{k\alpha} - \overline{\Psi}^{k\alpha}}{R} = \left(\frac{\Psi^{\alpha} - \overline{\Psi}^{\alpha}}{R}\right) (\Psi^{(k-1)\alpha} + \Psi^{(k-2)\alpha}\overline{\Psi} + \cdots + \overline{\Psi}^{(k-1)\alpha}).$$

Since $p^2 \left| \frac{\Psi^{\alpha} - \overline{\Psi}^{\alpha}}{R} \right|$, and $\Psi^n + \overline{\Psi}^n$ and $(\Psi\overline{\Psi})^n$ are integers, it follows that $p^2 \left| \Gamma_{k\alpha} \right|$.

Suppose $p^2 | \Gamma_{k\alpha+r}$, $0 < r < \alpha$, and that this is the smallest such index not a multiple of α . Dividing $\Gamma_{k\alpha+r}$ by $\Gamma_{k\alpha}$, we obtain

$$\frac{\Psi^{k\alpha+r} - \overline{\Psi}^{k\alpha+r}}{R} = \Psi^r \left(\frac{\Psi^{k\alpha} - \overline{\Psi}^{k\alpha}}{R} \right) + \overline{\Psi}^{k\alpha} \left(\frac{\Psi^r - \overline{\Psi}^r}{R} \right)$$
$$\Gamma_{k\alpha+r} = \Psi^r \Gamma_{k\alpha} + \overline{\Psi}^{k\alpha} \Gamma_r.$$

or

117

1984]

From 3.1, $q \not\equiv c^2 \pmod{p}$, so $p \not\mid \overline{\Psi}^{k\alpha}$ and, thus, $p^2 \mid \Gamma_r$. But this contradicts the hypothesis that α was the smallest such index.

3.2.2 Lemma: If $p \| \Gamma_{\alpha}$, then $p^2 | \Gamma_{p\alpha}$. Consider:

$$(\Gamma_{\alpha})^{p} = \left(\frac{\Psi^{\alpha} - \overline{\Psi}^{\alpha}}{R}\right)^{p}.$$

Noting that R^{p-1} is an integer,

$$R^{p-1}(\Gamma_{\alpha})^{p} = \frac{\Psi^{p\alpha} - \overline{\Psi}^{p\alpha}}{R} + \sum_{s=1}^{\frac{p-1}{2}} (-1)^{s} (\Psi\overline{\Psi})^{s\alpha} {p \choose s} \left[\frac{\Psi^{(p-2s)\alpha} - \overline{\Psi}^{(p-2s)\alpha}}{R} \right].$$

 p^2 divides all terms but $\frac{\Psi^{p\alpha} - \overline{\Psi}^{p\alpha}}{R} = \Gamma_{p\alpha}$, so it must divide it also.

3.2.3 Lemma: If $p \| \Gamma_{\alpha}$ but $p^2 \| \Gamma_{t\alpha}$, $1 \le t \le p$, then, since $p^2 | \Gamma_{kt\alpha}$ (from 3.2.1) and $p^2 | \Gamma_{p\alpha}$ (from 3.2.2), it follows that t | p; but p is prime, so

 $p^2 || \Gamma_{\alpha}$ or $p^2 || \Gamma_{p\alpha}$.

In the former case, $p|\Gamma_{p\pm 1}$; in the latter, since $p\pm 1$ is not a multiple of $p\alpha$, $p^2/\Gamma_{p\pm 1}$. This establishes the result.

3.3 We next consider Ψ , $\overline{\Psi}$ with $c = c_1 + \xi p$ and $q = q_1 + \zeta p$, expand and reduce $\frac{\Psi^{p\pm1} - \overline{\Psi}^{p\pm1}}{R}$ (mod p^2). The result is linear in ξ and ζ . Thus, for given c, q, for $\frac{\Psi^{p\pm 1} - \overline{\Psi}^{p\pm 1}}{R} \equiv 0 \pmod{p^2}$, each ξ , $0 \leq \xi < p$, generates one ζ , $0 \leq \zeta < p$.

Fix c. Let q range from 1 to (p-1). One of these pairs (c, q), that with $q \equiv c^2 \pmod{p}$, will produce a sequence not containing an entry point for p [4]. The other p-2 pairs will each generate a solution $\xi = 0$, $\zeta = \theta$ yielding a sequence with Ψ associated with $c + \sqrt{q} + \theta p$ such that $z(p) = z(p^2)$. When c = 1, q = 5, we have the Fibonacci sequence. If the solutions θ are randomly distributed over 0, 1, 2, ..., p - 1, the probability $\theta = 0$ is 1/p. The expected number of such phenomena, $p \leq P$, is $\sum_{p=1}^{p} 1/p$, whose series diverges (§2.3). On the basis of random distribution, the phenomenon should occur before $p > 10^6$. On the other hand, 1n 1n 10^6 is not yet 3, perhaps not too wide a miss?

REFERENCES

- L. E. Dickson. *History of the Theory of Numbers*, Vol. I. New York: Chelsea Publishing Company, 1952. 1.
- L. A. G. Dresel. Letter to the Editor. The Fibonacci Quarterly 15. no. 4 (1977):346.
- C. F. Gauss. Disquisitiones Arithmeticae. New Haven: Yale Univ. Press, 3. 1966.
- J. J. Heed & L. Kelly. "Entry Points of the Fibonacci Sequence and the Euler ϕ Function." The Fibonacci Quarterly 16, no. 1 (1978):47.
- H. Rademacher. Lectures on Elementary Number Theory. New York: Blaisdell Publishing Company, 1964. D. Shanks. Solved and Unsolved Problems in Number Theory, 2nd ed. New
- York: Chelsea Publishing Company, 1978.

[May

118