```
WIEFERICHS AND THE PROBLEM }z(\mp@subsup{p}{}{2})=z(p
    JOSEPH J. HEED
Norwich University, Northfield, VT 05663
    (Submitted January 1982)
```


INTRODUCTION

1. Let $z(n)$ be the index of the first Fibonacci number divisible by the natural number n. At this writing, there has not been found a prime p whose square enters the Fibonacci sequence at the same index as does p. This does not occur for $p<10^{6}$ [2].

The problem is related to the following one. For what relatively prime p, b, is it true that $p^{2} \mid b^{p-1}-1$? Apparently, this question was first asked by Abe1. Dickson [1] devotes a chapter to related results. For $b=2$, the conforming p^{2} values are the well-known Wieferich squares, which enter in the solution of Fermat's Last Theorem. The only two Wieferich squares with $p<3 \cdot 10^{9}$ are 1093^{2} and 3511^{2} [6, p. 229]. These phenomena are rare but, to a degree, predictable. An investigation of this predictability sheds some light on the Fibonacci phenomenon.
2.1 Notation. Define $n \| b^{x}-1$ as meaning $n \mid b^{x}-1$, and $n \nmid b^{y}-1$ for $y<x$ (i.e., b belongs to the exponent x, modulo n).
2.2 The following are well known. For p prime, $(b, p)=1$; if $p \| b^{\alpha}-1$, then $p \mid b^{\beta}-1$ if and only if $\beta=k \cdot \alpha$. Since $p \mid b^{p-1}-1$ (Fermat), it follows that $\alpha \mid p-1$. For q prime, $(b, q)=1$; if $q \| b^{\gamma}-1$, then $p q \| b^{1 \mathrm{~cm}(\alpha, \gamma)}-1$. The multiplicative properties are similar to those of the Euler ϕ function. Indeed, $p^{2} \mid b^{p \alpha}-1$ as $\phi\left(p^{2}\right)=p \phi(p)$. However, here we have a deviation: $p^{2} \| b^{p \alpha}-1$, unless $p^{2} \| b^{\alpha}-1$. (In terms of decimals of reciprocals of integers, the first prime >3, such that $1 / p^{2}$ has a period the same length as $1 / p$, i.e., $p^{2} \mid 10^{p-1}$, is 487. Its period is of length 486.) It can be shown that this deviation occurs if and only if $p^{2} \mid b^{p-1}-1$. If such is the case, and imitating Shanks's flair for coinage of such terms, we say p is a wieferich, modulo b.
2.3 Consider the solutions to $x^{p-1} \equiv 1\left(\bmod p^{2}\right)$. Gauss [3, art. 85] assures us that there are $p-1$ distinct solutions, x, between 1 and $p^{2}-1$. For each $b, 1 \leqslant b<p$, there is a distinct k such that

$$
(b+k p)^{p-1} \equiv 1\left(\bmod p^{2}\right) .
$$

These provide the $p-1$ solutions:

$$
(b+k p)^{p-1}-1 \equiv b^{p-1}-1+(p-1) b^{p-2} k p\left(\bmod p^{2}\right)
$$

and

$$
\left(\frac{b^{p-1}-1}{p}\right)-b^{-1} k \equiv 0(\bmod p), \text { yie1ding } k \equiv b\left(\frac{b^{p-1}-1}{p}\right) \quad(\bmod p) .
$$

If x is a solution, so too is $p^{2}-x . \quad x=1$ is always a solution; therefore, $(p-3) / 2$ solutions are scattered from $x=2$ to $x=\left(p^{2}-1\right) / 2$. If randomly distributed, the probability that a particular $x=万$ is a solution is

WIEFERICHS AND THE PROBLEM $z\left(p^{2}\right)=z(p)$

($p-3$)/($\left.p^{2}-3\right)$. Holding b fixed and letting p range, the expected number of solutions encountered $\leqslant P$ is $\sum_{p}^{P}(p-3) /\left(p^{2}-3\right)$. Since the series is divergent $\left(\sum_{p \leqslant x} 1 / p=\ln \ln x+c+0(1 / \log x)\right.$ [5, Th. 50, p. 120]), but diverges slowly, the relative scarcity of these wieferichs, modulo b, is not surprising.

THE MAIN THEOREMS

3.1 In [4], information about the entry points of the Fibonacci sequence was obtained by imbedding the sequence in a family of sequences with similar properties. Specifically, let $\left\{\Gamma_{n}\right\}$ be a linear recursive sequence with $n^{\text {th }}$ term given by

$$
\Gamma_{n}(c, q)=\frac{\Psi^{n}-\bar{\Psi}^{n}}{R}= \begin{cases}\frac{(c+\sqrt{q})^{n}-(c-\sqrt{q})^{n}}{2 \sqrt{q}} & \text { for } q \nexists c^{2}(\bmod 4) \\ \frac{\left(\frac{c+\sqrt{q}}{2}\right)^{n}-\left(\frac{c-\sqrt{q}}{2}\right)^{n}}{\sqrt{q}} & \text { for } q \equiv c^{2}(\bmod 4)\end{cases}
$$

yielding the sequences defined by

$$
\Gamma_{n}=\left\{\begin{array}{l}
2 c \Gamma_{n-1}+\left(q-c^{2}\right) \Gamma_{n-2} \\
c \Gamma_{n-1}+\frac{q-c^{2}}{4} \Gamma_{n-2}
\end{array}\right.
$$

with initial values $1,2 c$ or $1, c$. For $c=1, q=5$, we have the Fibonacci sequence.

Let $e=(q / p)$ be the Legendre symbol.
With $q \not \equiv c^{2}, c \not \equiv 0, q \not \equiv 0(\bmod p)$, we have $p \mid \Gamma_{p-e}$.
If $p \| \Gamma_{\alpha}$, then $p \mid \Gamma_{\beta}$ if and only if $\beta=k \alpha$. Also, $\alpha \mid p-e$, [4].
3.2 Theorem: Let $p \| \Gamma_{\alpha}$. Then, $p^{2} \| \Gamma_{\alpha}$ if and only if $p^{2} \mid \Gamma_{p-e}$ (paralleling the result mentioned in $\mathbb{T} 2.2$). Proof is by means of Lemmas 3.2.1, 3.2.2, and 3.2.3 below.
3.2.1 Lemma: If $p^{2} \| \Gamma_{\alpha}$, then $p^{2} \mid \Gamma_{x}$ if and only if x is a multiple of α. Consider:

$$
\Gamma_{k \alpha}=\frac{\Psi^{k \alpha}-\bar{\Psi}^{k \alpha}}{R}=\left(\frac{\Psi^{\alpha}-\bar{\Psi}^{\alpha}}{R}\right)\left(\Psi^{(k-1) \alpha}+\Psi^{(k-2) \alpha} \bar{\Psi}+\cdots+\bar{\Psi}^{(k-1) \alpha}\right)
$$

Since $p^{2} \left\lvert\, \frac{\Psi^{\alpha}-\bar{\Psi}^{\alpha}}{R}\right.$, and $\Psi^{n}+\bar{\Psi}^{n}$ and $(\Psi \bar{\Psi})^{n}$ are integers, it follows that $p^{2} \mid \Gamma_{k \alpha}$.
Suppose $p^{2} \mid \Gamma_{k \alpha+r}, 0<r<\alpha$, and that this is the smallest such index not a multiple of α. Dividing $\Gamma_{k \alpha+r}$ by $\Gamma_{k \alpha}$, we obtain

$$
\frac{\Psi^{k \alpha+r}-\bar{\Psi}^{k \alpha+r}}{R}=\Psi^{r}\left(\frac{\Psi^{k \alpha}-\bar{\Psi}^{k \alpha}}{R}\right)+\bar{\Psi}^{k \alpha}\left(\frac{\Psi^{r}-\bar{\Psi}^{r}}{R}\right)
$$

or

$$
\Gamma_{k \alpha+r}=\Psi^{r} \Gamma_{k \alpha}+\bar{\Psi}^{k \alpha} \Gamma_{r}
$$

WIEFERICHS AND THE PROBLEM $z\left(p^{2}\right)=z(p)$

From 3.1, $q \not \equiv c^{2}(\bmod p)$, so $p \nmid \bar{\Psi}^{k \alpha}$ and, thus, $p^{2} \mid \Gamma_{r}$. But this contradicts the hypothesis that α was the smallest such index.
3.2.2 Lemma: If $p \| \Gamma_{\alpha}$, then $p^{2} \mid \Gamma_{p \alpha}$. Consider:

$$
\left(\Gamma_{\alpha}\right)^{p}=\left(\frac{\Psi^{\alpha}-\bar{\Psi}^{\alpha}}{R}\right)^{p}
$$

Noting that R^{p-1} is an integer,

$$
R^{p-1}\left(\Gamma_{\alpha}\right)^{p}=\frac{\Psi^{p \alpha}-\bar{\Psi}^{p \alpha}}{R}+\sum_{s=1}^{\frac{p-1}{2}}(-1)^{s}(\Psi \bar{\Psi})^{s \alpha}\binom{p}{s}\left[\frac{\Psi^{(p-2 s) \alpha}-\bar{\Psi}^{(p-2 s) \alpha}}{R}\right] .
$$

p^{2} divides all terms but $\frac{\Psi^{p \alpha}-\bar{\psi}^{p \alpha}}{R}=\Gamma_{p \alpha}$, so it must divide it also.
3.2.3 Lemma: If $p \| \Gamma_{\alpha}$ but $p^{2} \| \Gamma_{t \alpha}, 1<t<p$, then, since $p^{2} \mid \Gamma_{k t \alpha}$ (from 3.2.1) and $p^{2} \mid \Gamma_{p \alpha}$ (from 3.2.2), it follows that $t \mid p$; but p is prime, so

$$
p^{2} \| \Gamma_{\alpha} \quad \text { or } \quad p^{2} \| \Gamma_{p \alpha} .
$$

In the former case, $p \mid \Gamma_{p \pm 1}$; in the latter, since $p \pm 1$ is not a multiple of $p \alpha$, $p^{2}{ }^{\prime} \Gamma_{p \pm 1}$. This establishes the result.
3.3 We next consider $\Psi, \bar{\Psi}$ with $c=c_{1}+\xi p$ and $q=q_{1}+\zeta p$, expand and reduce $\frac{\Psi^{p \pm 1}-\bar{\Psi}^{p \pm 1}}{R}\left(\bmod p^{2}\right)$. The result is linear in ξ and ζ. Thus, for given c, q, for $\frac{\Psi^{p \pm 1}-\bar{\Psi}^{p \pm 1}}{R} \equiv 0\left(\bmod p^{2}\right)$, each $\xi, 0 \leqslant \xi<p$, generates one ζ, $0 \leqslant \zeta<p$.

Fix c. Let q range from 1 to $(p-1)$. One of these pairs (c, q), that with $q \equiv c^{2}(\bmod p)$, will produce a sequence not containing an entry point for p [4]. The other $p-2$ pairs will each generate a solution $\xi=0, \zeta=\theta$ yielding a sequence with Ψ associated with $c+\sqrt{q+\theta p}$ such that $z(p)=z\left(p^{2}\right)$. When $c=1$, $q=5$, we have the Fibonacci sequence. If the solutions θ are randomly distributed over $0,1,2, \ldots, p-1$, the probability $\theta=0$ is $1 / p$. The expected number of such phenomena, $p \leqslant P$, is $\sum_{p}^{P} 1 / p$, whose series diverges (§2.3). On the basis of random distribution, the phenomenon should occur before $p>10^{6}$. On the other hand, $\ln \ln 10^{6}$ is not yet 3 , perhaps not too wide a miss?

REFERENCES

1. L. E. Dickson. History of the Theory of Numbers, Vo1. I. New York: Chelsea Publishing Company, 1952.
2. L. A. G. Dresel. Letter to the Editor. The Fibonacci Quarterly 15. no. 4 (1977):346.
3. C. F. Gauss. Disquisitiones Arithmeticae. New Haven: Yale Univ. Press, 1966.
4. J. J. Heed \& L. Kelly. "Entry Points of the Fibonacci Sequence and the Euler ϕ Function." The Fibonacai Quarterly 16, no. 1 (1978):47.
5. H. Rademacher. Lectures on Elementary Number Theory. New York: Blaisde11 Publishing Company, 1964.
6. D. Shanks. Solved and Unsolved Problems in Number Theory, 2nd ed. New York: Chelsea Publishing Company, 1978.
