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INTRODUCTION 

1. Let z{ri) be the index of the first Fibonacci number divisible by the natu-
ral number n. At this writing, there has not been found a prime p whose square 
enters the Fibonacci sequence at the same index as does p. This does not occur 
for p < 106 [2], 

The problem is related to the following one. For what relatively prime p, 
b9 is it true that p2\bp~1 - 1? Apparently, this question was first asked by 
Abel. Dickson [1] devotes a chapter to related results. For b = 2, the con-
forming p 2 values are the well-known Wieferich squares, which enter in the solu-
tion of Fermat's Last Theorem. The only two Wieferich squares with p < 3 • 109 

are 10932 and 35112 [6, p. 229]. These phenomena are rare but, to a degree, 
predictable. An investigation of this predictability sheds some light on the 
Fibonacci phenomenon. 

2.1 Notation. Define n\bx - 1 as meaning n\bx - 1, and n\by - 1 for y < x 
(i.e., b belongs to the exponent x> modulo ri) . 

2.2 The following are well known. For p prime, (b, p) = 1; if p\\ba - 1, then 
p\bB - 1 if and only if 3 = k • a. Since p\bp x - 1 (Fermat), it follows that 
a\p - 1. For q prime, (b, q) = 1; if q\\by - 1, then pq\\blcm(a'Y) - 1 . The mul-
tiplicative properties are similar to those of the Euler <j) function. Indeed, 
p2\bpcL - 1 as (j)(p2) = pc()(p). However, here we have a deviation: p2\\bpa - 1, 
unless p2||^a - 1. (In terms of decimals of reciprocals of integers, the first 
prime > 3, such that 1/p2 has a period the same length as 1/p, i.e., p2|10p~ 1, 
is 487. Its period is of length 486.) It can be shown that this deviation oc-
curs if and only if p 2 | & p _ 1 - 1. If such is the case, and imitating Shanksfs 
flair for coinage of such terms, we say p is a wieferich, modulo b. 

2.3 Consider the solutions to xp~1 E 1 (mod p 2 ) . Gauss [3, art. 85] assures 
us that there are p - 1 distinct solutions, xs between 1 and p 2 - 1. 

For each b, 1 < b < p, there is a distinct k such that 

(b + kp^'1 = 1 (mod p 2 ) . 

These provide the p - 1 solutions: 

(b + kp)p~1 - 1 = bp~x - 1 + (p - l)bp~2kp (mod p2) 

and 

(- M - b~Xk = 0 (mod p ) , yielding k = b{~ —) (mod p) . 

If x is a solution, so too is p - x. x = 1 is always a solution; there-
fore, (p - 3)/2 solutions are scattered from x = 2 to x = (p2 - l)/2. If ran-
domly distributed, the probability that a particular x = b is a solution is 
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(p - 3)/(p2 - 3). Holding b fixed and letting p range, the expected number of 
solutions encountered < P is Ep(p - 3)/(p2 - 3). Since the series is divergent 
(£p<J7p = In In x + c + 0(l/log x) [5, Th. 50, p. 120]), but diverges slowly, 
the relative scarcity of these wieferichs, modulo b9 is not surprising. 

THE MAIN THEOREMS 

3.1 In [4], information about the entry points of the Fibonacci sequence was 
obtained by imbedding the sequence in a family of sequences with similar prop-
erties. Specifically, let {Tn} be a linear recursive sequence with nth term 
given by 

f (c + rq)n - (g - r q r 
l/q 

?n(c> <7) = 
xyn _ xyn 

~~~R 

fo r q % e (mod 4) 

JaY (Ĥ r - (^) 
rQ 

fo r q - c (mod 4) 

yielding the sequences defined by 

oT + q - g 2
 r 

with initial values 1, 2c or 1, c. For c = 1, q = 5, we have the Fibonacci se-
quence . 

Let e = (q/p) be the Legendre symbol. 

With q ? o2, c ? 0, q $ 0 (mod p), we have p|rp_e. 

I f p | | r a , then p | r 6 i f and only i f g = ka. A l so , a | p - £ , [ 4 ] . 

3.2 Theorem: Let p | | r a . Then, p 2 | | r a i f and only i f p2\Tp.e ( p a r a l l e l i n g t h e 
r e s u l t mentioned i n 1f2.2). Proof i s by means of Lemmas 3 . 2 . 1 , 3 . 2 . 2 , and 3 . 2 . 3 
below. 

3 .2 .1 Lemma: I f p 2 | | r a , then p2\Tx i f and only i f x i s a m u l t i p l e of a . Con-
s i d e r : 

Since p2 

r/ca 

\|/a 

\jjka 

_ Ya 

_ vpka 

R 

„ J « / " 

R 

h a - ^ct\^Ii(k-i)a + y(fc-2)cnjr + ... + "y ( k - 1 ) a ) . 

, and ¥n + Wn and ( W ) n are integers, it follows that pz\Tk 

Suppose p2|rfca + P, 0 < r < a, and that this is the smallest such index not 
a multiple of a. Dividing Tka + r by Tka , we obtain 

y/ca + r1 _ Tyka + 2 ,fr/¥fcg - ?f e a\ + ^r*r - r \ 

rfco+I. -*%„ + ^ a r r . 
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From 3.1, q ^ c2 (mod p), so p|^fea and, thus, p2\Tr. But this contradicts the 
hypothesis that a was the smallest such index. 

3.2.2 Lemma: If p||Ta, thenp2|rpa. Consider: 

Noting that Rp~1 is an integer, 
P-i 

i?^ 1 ^)^ =^ ^JL-+- £ (-1)*(OT)*"(P)[̂  ^ -J. 

yPa _ lJFPa 

p d i v i d e s a l l terms bu t — = Tpa , so i t must d i v i d e i t a l s o . 

3 . 2 . 3 Lemma: I f p\\Ta bu t p 2 | | r t a , 1 < t < p , t h e n , s i n c e p2\Vkta (from 3 . 2 . 1 ) 
and p2\Tpa (from 3 . 2 . 2 ) , i t fo l lows t h a t t\p; bu t p i s p r ime , so 

p2| |ra or p 2 | | r p a . 

In the former case, p\Tp±1; in the latter, since pi 1 is not a multiple of pa, 
p2|rp± 1. This establishes the result. 

3.3 We next consider ¥, ¥ with c = c± + E,p and q = q1 + £p, expand and reduce 
\j/P±i _ lp±i 

5 (mod p ). The result is linear in £ and £. Thus, for given c, q, 
yP±i _ yp±i 

for = = 0 (mod pA) , each £, 0 < ^ < p, generates one £, 0 < £ < p. 

Fix e. Let q range from 1 to (p - 1). One of these pairs (c, q), that with 
q= c2 (mod p) , will produce a sequence not containing an entry point for p [4]. 
The other p- 2 pairs will each generate a solution £ = 0, £ = 0 yielding a se-
quence with ¥ associated with c + /<7 + 0p such that s(p) = s(p2). When c = I, 
q = 5, we have the Fibonacci sequence. If the solutions 0 are randomly dis-
tributed over 0, 1, 2, ..., p - 1, the probability 0 = 0 is 1/p. The expected 
number of such phenomena, p < P, is E p 1/p, whose series diverges (§2.3). On 
the basis of random distribution, the phenomenon should occur before p > 106. 
On the other hand, In In 106 is not yet 3, perhaps not too wide a miss? 
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