WEIGHTED ASSOCIATED STIRLING NUMBERS

F. T. HOWARD

Wake Forest University, Winston-Salem, N.C. 27109
(Submitted July 1982)

1. INTRODUCTION

The Stirling numbers of the first and second kind can be defined by

$$
\left\{\begin{array}{l}
(-\log (1-x))^{k}=k!\sum_{n=k}^{\infty} S_{1}(n, k) x^{n} / n! \tag{1.1}\\
\left(e^{x}-1\right)^{k}=k!\sum_{n=k}^{\infty} S(n, k) x^{n} / n!
\end{array}\right.
$$

These numbers are well known and have been studied extensively. There are many good references for them, including [4, Ch. 5] and [9, Ch. 4, pp. 32-38].

Not as well known are the associated Stirling numbers of the first and second kind, which can be defined by

$$
\left\{\begin{array}{l}
(-\log (1-x)-x)^{k}=k!\sum_{n=2 k}^{\infty} d(n, k) x^{n} / n! \tag{1.2}\\
\left(e^{x}-x-1\right)^{k}=k!\sum_{n=2 k}^{\infty} b(n, k) x^{n} / n!
\end{array}\right.
$$

We are using the notation of Riordan [9] for these numbers. One reason they are of interest is their relationship to the Stirling numbers:

$$
\left\{\begin{array}{l}
S_{1}(n, n-k)=\sum_{j=0}^{k} d(2 k-j, k-j)\binom{n}{2 k-j} \tag{1.3}\\
S(n, n-k)=\sum_{j=0}^{k} b(2 k-j, k-j)\binom{n}{2 k-j}
\end{array}\right.
$$

Equations (1.3) prove that $S_{1}(n, n-k)$ and $S(n, n-k)$ are both polynomials in n of degree $2 k$. Combinatorially, $d(n, k)$ is the number of permutations of $Z_{n}=\{1,2, \ldots, n\}$ having exactly k cycles such that each cycle has at least two elements; $b(n, k)$ is the number of set partitions of Z_{n} consisting of exactly k blocks such that each block contains at least two elements. Tables for $d(n, k)$ and $b(n, k)$ can be found in [9, pp. 75-76].

Carlitz [1], [2], has generalized $S_{1}(n, k)$ and $S(n, k)$ by defining weighted Stirling numbers $\bar{S}_{1}(n, k, \lambda)$ and $\bar{S}(n, \bar{k}, \lambda)$, where λ is a parameter. Carlitz has also investigated the related functions

$$
\left\{\begin{align*}
R_{1}(n, k, \lambda) & =\bar{S}_{1}(n, k+1, \lambda)+S_{1}(n, k) \tag{1.4}\\
R(n, k, \lambda) & =\bar{S}(n, k+1, \lambda)+S(n, k)
\end{align*}\right.
$$

For all of these numbers, Carlitz has found generating functions, combinatorial interpretations, recurrence formulas, and other properties. See [1] and [2] for details.

WEIGHTED ASSOCIATED STIRLING NUMBERS

The purpose of this paper is to define, in an appropriate way, the weighted associated Stirling numbers $\bar{d}(n, k, \lambda)$ and $\bar{b}(n, k, \lambda)$, and to examine their properties. In particular, we have the following relationships to $\bar{S}_{1}(n, k, \lambda)$ and $S(n, k, \lambda)$:

$$
\left\{\begin{array}{r}
\bar{S}_{1}(n, n-k, \lambda)=
\end{array} \begin{array}{r}
\sum_{j=0}^{k}\binom{n}{2 k-j+1} \bar{d}(2 k-j+1, k-j+1, \lambda) \tag{1.5}\\
\\
+n \lambda S_{1}(n-1, n-1-k)
\end{array} \quad \begin{array}{r}
\bar{n}(n, n-k, \lambda)=
\end{array} \begin{array}{r}
j=0 \\
\bar{j}\binom{n}{2 k-j+1} \bar{b}(2 k-j+1, k-j+1, \lambda) \\
\\
+n \lambda S(n-1, n-1-k)
\end{array}\right.
$$

We also define and investigate related functions $Q_{1}(n, k, \lambda)$ and $Q(n, k, \lambda)$, which are analogous to $R_{1}(n, k, \lambda)$ and $R(n, k, \lambda)$. In particular, we define $Q_{1}(n, k, \lambda)$ and $Q(n, k, \lambda)$ so that

$$
\left\{\begin{array}{l}
R_{1}(n, n-k, \lambda)=\sum_{j=0}^{k} Q_{1}(2 k-j, k-j, \lambda)\binom{n}{2 k-j} \tag{1.6}\\
R(n, n-k, \lambda)=\sum_{j=0}^{k} Q(2 k-j, k-j, \lambda)\binom{n}{2 k-j}
\end{array}\right.
$$

which can be compared to (1.3).
The development of the weighted associated Stirling numbers will parallel as much as possible the analogous work in [1] and [2]. In addition to the relationships mentioned above, we shall find generating functions, combinatorial interpretations, recurrence formulas, and other properties of $\bar{d}(n, k, \lambda), \bar{b}(n$, $k, \lambda), Q_{1}(n, k, \lambda)$, and $Q(n, k, \lambda)$.

$$
\text { 2. THE FUNCTIONS } \bar{d}(n, k, \lambda) \text { AND } \bar{b}(n, k, \lambda)
$$

Let n, k be positive integers, $n \geqslant k$, and $k_{2}, k_{3}, \ldots, k_{n}$ nonnegative such that

$$
\left\{\begin{array}{l}
k=k_{2}+k_{3}+\cdots+k_{n} \tag{2.1}\\
n=2 k_{2}+3 k_{3}+\cdots+n k_{n}
\end{array}\right.
$$

Put

$$
\begin{equation*}
b\left(n ; k_{2}, \ldots, k_{n} ; \lambda\right)=\sum\left(k_{2} \lambda^{2}+k_{3} \lambda^{3}+\cdots+k_{n} \lambda^{n}\right) \tag{2.2}
\end{equation*}
$$

where the summation is over all the partitions of $Z_{n}=\{1,2, \ldots, n\}$ into k_{2} blocks of cardinality $2, k_{3}$ blocks of cardinality $3, \ldots, k_{n}$ blocks of cardinality n. Then, following the method of Carlitz [1], we sum on both sides of (2.2) and obtain, after some manipulation,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{x}{n!} \sum_{k_{1}, k_{2}, \ldots} b\left(n ; k_{2}, k_{3}, \ldots ; \lambda\right) y^{k}=y\left(e^{\lambda x}-\lambda x-1\right) \exp \left\{y\left(e^{x}-x-1\right)\right\} \tag{2.3}
\end{equation*}
$$

Now we define

$$
\begin{equation*}
b(n, k, \lambda)=\sum \sum\left(k_{2} \dot{\lambda}^{2}+k_{3} \lambda^{3}+\cdots+k_{n} \lambda^{n}\right) \tag{2.4}
\end{equation*}
$$

where the inner summation is over all partitions of Z_{n} into k_{2} blocks of cardinality $2, k_{3}$ blocks of cardinality $3, \ldots, k_{n}$ blocks of cardinality n; the outer summation is over all $k_{2}, k_{3}, \ldots, k_{n}$ satisfying (2.1).

By (2.3) and (2.4), we have

$$
\begin{equation*}
\sum_{n, k} \bar{b}(n, k, \lambda) \frac{x^{n}}{n!} y^{k}=y\left(e^{\lambda x}-\lambda x-1\right) \exp \left\{y\left(e^{x}-x-1\right)\right\} \tag{2.5}
\end{equation*}
$$

and from (2.5) we obtain

$$
\begin{equation*}
k!\sum_{n=0}^{\infty} \bar{b}(n, k+1, \lambda) \frac{x^{n}}{n!}=\left(e^{\lambda x}-\lambda x-1\right)\left(e^{x}-x-1\right)^{k} \tag{2.6}
\end{equation*}
$$

It follows from (1.2) and (2.6) that

$$
\begin{equation*}
\bar{b}(n, k, \lambda)=\sum_{m=2}^{n-2 k+2}\binom{n}{m} \lambda^{m} b(n-m, k-1) \tag{2.7}
\end{equation*}
$$

For $\lambda=1$, (2.6) reduces to

$$
k!\sum_{n=0}^{\infty} \bar{b}(n, k+1,1) \frac{x^{n}}{n!}=\left(e^{x}-x-1\right)^{k+1}=(k+1)!\sum_{n=0}^{\infty} b(n, k+1) \frac{x^{n}}{n!} .
$$

Thus, we have

$$
\begin{equation*}
\bar{b}(n, k, 1)=k b(n, k) . \tag{2.8}
\end{equation*}
$$

We also have, by (2.6) and (2.7),

$$
\begin{aligned}
& \bar{b}(n, 0, \lambda)=0, \\
& \bar{b}(n, 1, \lambda)=\lambda \text { if } n \geqslant 2, \\
& \bar{b}(n, 2, \lambda)=\binom{n}{2} \lambda^{2}+\binom{n}{3} \lambda^{3}+\cdots+\binom{n}{n-2} \lambda^{n-2}, \\
& \bar{b}(n, k, \lambda)=0 \text { if } n<2 k, \\
& \bar{b}(2 k, k, \lambda)=\binom{2 k}{2} b(2 k-2, k-1) \lambda^{2} .
\end{aligned}
$$

The relationship to $\bar{S}(n, k, \lambda)$ is most easily proved by using an extension of a theorem in [7]. In a forthcoming paper [8], we prove the following:

Theorem 2.1: For $r \geqslant 1$ and $f \neq 0$, 1et

$$
F(x)=\sum_{i=r}^{\infty} f_{i} \frac{x^{i}}{i!} \quad \text { and } \quad W(x, \lambda)=1+\sum_{t=1}^{\infty} w_{t}(\lambda) \frac{x^{t}}{t!}
$$

be formal power series. Define $B_{n, j}^{(\lambda)}\left(0, \ldots, 0, f_{r}, f_{r+1}, \ldots\right)$ by

$$
W(x, \lambda)(F(x))^{j}=j!\sum_{n=0}^{\infty} B_{n, j}^{(\lambda)}\left(0, \ldots, 0, f_{r}, f_{r+1}, \ldots\right) \frac{x^{n}}{n!}
$$

Then $\left(\frac{r!}{f_{r}}\right)^{n} B_{k+r n, n}^{(\lambda)}\left(0, \ldots, 0, f_{r}, f_{r+1}, \ldots\right)=(k+r n)(k+r n-1) \ldots(n+1)$

$$
\cdot \sum_{j=0}^{k} \frac{n(n-1) \ldots(n-j+1)}{(k+r j)!}\left(\frac{r!}{f_{r}}\right)^{j} B_{k+r j, j}^{(\lambda)}\left(0, \ldots, 0, f_{r+1}, \ldots\right) .
$$

WEIGHTED ASSOCIATED STIRLING NUMBERS

It follows from Theorem 2.1 and the generating function for $\bar{S}(n, k, \lambda)$ that if we define

$$
\begin{equation*}
\left(e^{\lambda x}-1\right)\left(e^{x}-x-1\right)^{k}=k!\sum_{n=0}^{\infty} \bar{a}(n, k+1, \lambda) \frac{x^{n}}{n!} \tag{2.9}
\end{equation*}
$$

then

$$
\begin{equation*}
\bar{S}(n, n-k, \lambda)=\sum_{j=0}^{k}\binom{n}{2 k-j+1} \bar{\alpha}(2 k-j+1, k-j+1, \lambda) \tag{2.10}
\end{equation*}
$$

By (2.6) and (2.9),

$$
\bar{a}(n, k+1, \lambda)=\bar{b}(n, k+1, \lambda)+\lambda n b(n-1, k),
$$

and by (1.3), (2.10) can be wrtiten
$\bar{S}(n, n-k, \lambda)=\sum_{j=0}^{k} \bar{b}(2 k-j+1, k-j+1, \lambda)\binom{n}{2 k-j+1}+\lambda n S(n-1, n-1-k)$,
which proves $\bar{S}(n, n-k, \lambda)$ is a polynomial in n of degree $2 k+1$.
It is convenient to define

$$
\begin{equation*}
Q(n, k, \lambda)=\bar{b}(n, k+1, \lambda)+n \lambda b(n-1, k)+b(n, k), \tag{2.12}
\end{equation*}
$$

which implies

$$
\begin{equation*}
Q(n, k, \lambda)=\sum_{m=0}^{n-2 k}\binom{n}{m} b(n-m, k) \lambda^{m} . \tag{2.13}
\end{equation*}
$$

Note that $Q(n, k, 0)=b(n, k)$.
A generating function can be found. If we sum on both sides of (2.12), we have

$$
\begin{equation*}
\sum_{n, k} Q(n, k, \lambda) \frac{x^{n}}{n!} y^{k}=e^{\lambda x} \exp \left\{y\left(e^{x}-x-1\right)\right\} \tag{2.14}
\end{equation*}
$$

If we differentiate both sides of (2.14) with respect to y and compare the coefficients of $x^{n} y^{k}$, we have
$Q(n, k, \lambda+1)=Q(n, k, \lambda)+(k+1) Q(n, k+1, \lambda)+n Q(n-1, k, \lambda) . \quad$ (2.15)
If we differentiate both sides of (2.14) with respect to x, we have
$Q(n+1, k, \lambda)=\lambda Q(n, k, \lambda)+Q(n, k-1, \lambda+1)-Q(n, k-1, \lambda)$.
Combining (2.15) and (2.16), we have our main recurrence formula: $Q(n+1, k, \lambda)=(\lambda+k) Q(n, k, \lambda)+n Q(n-1, k-1, \lambda)$.
It follows from (3.4) that

$$
Q(n, k, 1)=b(n, k)+b(n+1, k) .
$$

We also have

$$
\begin{aligned}
& Q(n, 0, \lambda)=\lambda^{n} \\
& Q(n, 1, \lambda)=\binom{n}{0} \lambda^{0}+\binom{n}{1} \lambda^{1}+\cdots+\binom{n}{n-2} \lambda^{n-2} \\
& Q(n, k, 0)=b(n, k) \\
& Q(2 k, k, \lambda)=b(2 k, k) \\
& Q(n, k, \lambda)=0 \text { if } n<2 k
\end{aligned}
$$

WEIGHTED ASSOCIATED STIRLING NUMBERS

A small table of values is given below.

n	0	$Q(n, k, \lambda)$		
0	1		2	3
1	λ			
2	λ^{2}	1		
3	λ^{3}	$1+3 \lambda$		
4	λ^{4}	$1+4 \lambda+6 \lambda^{2}$	3	
5	λ^{5}	$1+5 \lambda+10 \lambda^{2}+10 \lambda^{3}$	$10+15 \lambda$	
6	λ^{6}	$1+6 \lambda+15 \lambda^{2}+20 \lambda^{3}+15 \lambda^{4}$	$25+60 \lambda+45 \lambda^{2}$	15

It follows from (2.14) that

$$
\begin{equation*}
k!\sum_{n=0}^{\infty} Q(n, k, \lambda) \frac{x^{n}}{n!}=e^{\lambda x}\left(e^{x}-x-1\right) . \tag{2.18}
\end{equation*}
$$

By comparing coefficients of x^{n} on both sides of (2.18), we get an explicit formula for $Q(n, k, \lambda)$:

$$
\begin{equation*}
Q(n, k, \lambda)=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} \sum_{t=0}^{k-j}\binom{k-j}{t}(n)_{t}(\lambda+j)^{n-t}, \tag{2.19}
\end{equation*}
$$

where $(n)_{t}=n(n-1) \ldots(n-t+1)$.
It follows from Theorem 2.1 and the generating function for $R(n, k, \lambda)$ that

$$
\begin{equation*}
R(n, n-k, \lambda)=\sum_{j=0}^{k} Q(2 k-j, k-j, \lambda)\binom{n}{2 k-j}, \tag{2.20}
\end{equation*}
$$

which shows that $R(n, n-k, \lambda)$ is a polynomial in n of degree $2 k$. Equation (2.20) also shows that $R^{\prime}(n, k, \lambda)=Q(2 n-k, n-k, \lambda)$, where $R^{\prime}(n, k, \lambda)$ is defined by Carlitz in [2].

In [1], Carlitz generalized the Bell number [4, p. 210] by defining

$$
\begin{equation*}
B(n, \lambda)=\sum_{k=0}^{n} R(n, k, \lambda) . \tag{2.21}
\end{equation*}
$$

This suggests the definition

$$
\begin{equation*}
A(n, \lambda)=\sum_{k=0}^{n} Q(n, k, \lambda), \tag{2.22}
\end{equation*}
$$

which for $\lambda=0$ reduces to

$$
A(n)=\sum_{k=0}^{n} b(n, k) .
$$

The function $A(n)$ appears in [5] and [6].
By (2.13), we have

$$
\begin{equation*}
A(n, \lambda)=\sum_{m=0}^{n}\binom{n}{m} \sum_{k=0}^{n-m} b(n-m, k) \lambda^{m}=\sum_{m=0}^{n}\binom{n}{m} \lambda^{m} A(n-m) . \tag{2.23}
\end{equation*}
$$

Also by (2.18),

$$
\begin{equation*}
\sum_{n=0}^{\infty} A(n, \lambda) \frac{x^{n}}{n!}=e^{\lambda x} \exp \left(e^{x}-x-1\right) \tag{2.24}
\end{equation*}
$$

and (2.24) implies

$$
\sum_{n=0}^{\infty} A(n, \lambda) \frac{x^{n}}{n!}=e^{x(\lambda-1)} \exp \left(e^{x}-1\right)=\sum_{n=0}^{\infty} B(n, \lambda-1) \frac{x^{n}}{n!}
$$

so

$$
\begin{equation*}
A(n, \lambda)=B(n, \lambda-1) . \tag{2.25}
\end{equation*}
$$

For example, $A(n, 1)=B(n, 0)$, so

$$
\sum_{k=0}^{[(n+1) / 2]}(b(n, k)+b(n+1, k))=\sum_{k=0}^{n} S(n, k) .
$$

There are combinatorial interpretations of $A(n, \lambda)$ and $Q(n, k, \lambda)$ that are similar to the interpretations of $B(n, \lambda)$ and $R(n, k, \lambda)$ given in [1]. Let λ be a nonnegative integer and let $B_{1}, B_{2}, \ldots, B_{\lambda}$ denote λ open boxes. Let $P(n, k, \lambda)$ denote the number of partitions of Z_{n} into k blocks with each block containing at least two elements, with the understanding that an arbitrary number of the elements of Z_{n} may be placed in any number (possibly none) of the boxes. We shall call these λ_{1} partitions. Clearly, $P(n, k, 0)=b(n, k)$.

Now, if i elements are placed in the λ boxes, there are $\binom{n}{i}$ ways to choose the elements, and for each element chosen there are λ choices for a box. The number of such partitions is $\binom{n}{i} \lambda^{i} b(n-i, k)$. Hence,

$$
\begin{equation*}
P(n, k, \lambda)=\sum_{m=0}^{n}\binom{n}{m} \lambda^{m} b(n-m, k)=Q(n, k, \lambda) . \tag{2.26}
\end{equation*}
$$

It is clear from (2.26) that $A(n, \lambda)$ is the number of λ_{1} partitions of Z_{n}.
It is also clear from (2.7) and the above comments that $\bar{b}(n, k+1, \lambda)$ is the number of λ_{1} partitions of Z_{n} into k blocks such that at least two elements of Z_{n} are placed in the open boxes. Definition (2.4) furnishes another combinatorial interpretation of $\bar{b}(n, k, \lambda)$.

Finally, we note that some of the definitions and formulas in this section can be generalized in terms of the r-associated Stirling numbers of the second kind $b_{r}(n, k)$. These numbers are defined by means of

$$
\left(e^{x}-\sum_{i=0} \frac{X^{i}}{i!}\right)^{k}=k!\sum_{n=0}^{\infty} b_{r}(n, k) \frac{X^{n}}{n!},
$$

and their properties are examined in [3], [5], and [6]. Using the methods of this section, we can define functions $\bar{b}_{r}(n, k, \lambda), Q^{(r)}(n, k, \lambda)$ and $A^{(r)}(n, \lambda)$ which reduce to $\bar{S}(n, k, \lambda), R(n, k, \lambda)$, and $B(n, \lambda)$ when $r=0$, and reduce to $\bar{b}(n, k, \lambda), Q(n, k, \lambda)$, and $A(n, \lambda)$ when $r=1$. The combinatorial interpretations and formulas (2.4)-(2.7), (2.10), (2.11), (2.17), (2.18), (2.22), (2.23) can all be generalized.

WEIGHTED ASSOCIATED STIRLING NUMBERS

3. THE FUNCTIONS $d(n, k, \lambda)$ AND $Q_{1}(n, k, \lambda)$

We define $\langle\lambda\rangle_{j}=\lambda(\lambda+1) \ldots(\lambda+j-1)$. Now put

$$
\begin{equation*}
d\left(n ; k_{2}, \ldots, k_{n} ; \lambda\right)=\sum\left(k_{2} \frac{\langle\lambda\rangle_{2}}{1!}+\cdots+k_{n} \frac{\langle\lambda\rangle_{n}}{(n-1)!}\right) \tag{3.1}
\end{equation*}
$$

where the summation is over all permutations of Z_{n},

$$
n=2 k_{2}+3 k_{3}+\cdots+n k_{n}
$$

with k_{2} cycles of length $2, k_{3}$ cycles of length $3, \ldots, k_{n}$ cycles of length n. Then, as in [1], we sum on both sides of (3.1) and obtain, after some manipulation,

$$
\begin{align*}
& \sum_{n=2}^{\infty} \frac{x^{n}}{n!} \sum_{k_{2}, k_{3}, \ldots} d\left(n ; k_{2}, k_{3}, \ldots ; \lambda\right) y^{k} \tag{3.2}\\
= & y\left((1-x)^{-\lambda}-\lambda x-1\right) \exp \{y(-\log (1-x)-x)\} .
\end{align*}
$$

We now define

$$
\begin{equation*}
\bar{d}(n, k, \lambda)=\sum \sum\left(k_{2} \frac{\langle\lambda\rangle_{2}}{1!}+k_{3} \frac{\langle\lambda\rangle_{3}}{2!}+\cdots+k_{n} \frac{\langle\lambda\rangle_{n}}{(n-1)!}\right) \tag{3.3}
\end{equation*}
$$

where the inner summation is over all permutations of Z_{n} with k_{2} cycles of length $2, k_{3}$ cycles of length $3, \ldots, k_{n}$ cycles of length n; the outer summation is over all $k_{2}, k_{3}, \ldots, k_{n}$ satisfying (2.1).

By (3.2) and (3.3), we have

$$
\begin{align*}
\sum_{n, k} \bar{d}(n, k, \lambda) \frac{x^{n}}{n} y^{k} & =y\left((1-x)^{-\lambda}-\lambda x-1\right) \exp \{y(-\log (1-x)-x)\} \tag{3.4}\\
& =y\left((1-x)^{-\lambda}-\lambda x-1\right)(1-x)^{-y} e^{-x y},
\end{align*}
$$

and from (3.4), we obtain

$$
\begin{equation*}
k!\sum_{n=0}^{\infty} \bar{d}(n, k+1, \lambda) \frac{x^{n}}{n}=\left((1-x)^{-\lambda}-\lambda x-1\right)(-\log (1-x)-x)^{k} \tag{3.5}
\end{equation*}
$$

It follows from (1.2) and (3.5) that

$$
\begin{equation*}
\bar{d}(n, k, \lambda)=\sum_{m=2}^{n-2 k+m}\binom{n}{m} d(n-m, k-1)\langle\lambda\rangle_{m} \tag{3.6}
\end{equation*}
$$

For $\lambda=1$, (3.4) reduces to

$$
\begin{aligned}
& \qquad \begin{aligned}
\sum_{n=0}^{\infty} \bar{d}(n, k, 1) \frac{x^{n}}{n} y & =y\left((1-x)^{-1}-x-1\right) \exp \{y(-\log (1-x)-x)\} \\
& =\frac{\partial}{\partial x} \exp \{y(-\ln (1-x)-x)\}-x y \exp \{(y(-\log (1-x)-x)\} \\
& =\sum_{n, k} d(n+1, k) \frac{x^{n}}{n!} y^{k}-\sum_{n, k} n d(n-1, k-1) \frac{x^{n}}{n!} y^{k} .
\end{aligned}
\end{aligned}
$$

$$
\begin{equation*}
\bar{d}(n, k, 1)=d(n+1, k)-n d(n-1, k-1)=n d(n, k) \tag{3.7}
\end{equation*}
$$

We also have, by (3.5) and (3.6),

$$
\begin{aligned}
& \bar{d}(n, 0, \lambda)=0 \\
& \bar{d}(n, 1, \lambda)=\langle\lambda\rangle_{n} \text { if } n \geqslant 2, \\
& \bar{d}(n, 2, \lambda)=\binom{n}{2}(n-3)!\langle\lambda\rangle_{2}+\binom{n}{3}(n-4)!\langle\lambda\rangle_{3}+\cdots+\binom{n}{n-2} 1!\langle\lambda\rangle_{n-2}, \\
& \bar{d}(n, k, \lambda)=0 \text { if } n\langle 2 k, \\
& \bar{d}(2 k, k, \lambda)=\binom{2 k}{2} d(2 k-2, k-1)\langle\lambda\rangle_{2} .
\end{aligned}
$$

To find the relationship to $\bar{S}_{1}(n, k, \lambda)$, we use Theorem (2.1). We define $\bar{c}(n, k, \lambda)$ by

$$
\begin{equation*}
\left((1-x)^{-\lambda}-1\right)(-\log (1-x)-x)^{k}=k!\sum_{n=0}^{\infty} \bar{c}(n, k+1, \lambda) \frac{x^{n}}{n!} \tag{3.8}
\end{equation*}
$$

Then by Theorem 2.1 and the generating function for $\bar{S}_{1}(n, k, \lambda)$,

$$
\begin{equation*}
\bar{S}_{1}(n, n-k, \lambda)=\sum_{j=0}^{k}\binom{n}{2 k-j+1} \bar{c}(2 k-j+1, k-j+1, \lambda) \tag{3.9}
\end{equation*}
$$

By (3.5) and (3.8),

$$
\bar{c}(n, k+1, \lambda)=\bar{d}(n, k+1, \lambda)+\lambda n d(n-1, k),
$$

so by (1.3), equation (3.9) can be written

$$
\begin{align*}
\bar{S}_{1}(n, n-k, \lambda)=\sum_{j=0}^{k} \bar{d}(2 k & -j+1, k-j+1, \lambda)\binom{n}{2 k-j+1} \tag{3.10}\\
& +\lambda n S_{1}(n-1, n-1-k),
\end{align*}
$$

which proves $\bar{S}_{1}(n, n-k, \lambda)$ is a polynomial in n of degree $2 k+1$.
We now define the function $Q_{1}(n, k, \lambda)$ by means of

$$
\begin{equation*}
Q_{1}(n, k, \lambda)=\bar{d}(n, k+1, \lambda)+d(n, k)+n d(n-1, k) . \tag{3.11}
\end{equation*}
$$

then by (3.6),

$$
\begin{equation*}
Q_{1}(n, k, \lambda)=\sum_{m=0}^{n-2 k}\binom{n}{m} d(n-m, k)\langle\lambda\rangle_{m} . \tag{3.12}
\end{equation*}
$$

Note that $Q_{1}(n, k, 0)=d(n, k)$.
A generating function can be found by summing on both sides of (3.11). We have

$$
\begin{align*}
\sum_{n, k} Q_{1}(n, k, \quad) \frac{x^{n}}{n} y & =(1-x)^{-\lambda} \exp \{y(-\log (1-x)-x)\} \tag{3.13}\\
& =(1-x)^{-\lambda-y} e^{-x y}
\end{align*}
$$

If we differentiate (3.13) with respect to x, multiply by $1-x$, and then compare coefficients of $x^{n} y^{k}$, we obtain

$$
\begin{equation*}
Q_{1}(n+1, k, \lambda)=(\lambda+n) Q_{1}(n, k, \lambda)+n Q_{1}(n-1, k-1, \lambda) . \tag{3.14}
\end{equation*}
$$

If we multiply both sides of (3.13) by $1-x$ and compare coefficients $x^{n} y^{k}$, we have

$$
\begin{equation*}
Q_{1}(n, k, \lambda-1)=Q_{1}(n, k, \lambda)-n Q_{1}(n-1, k, \lambda) . \tag{3.15}
\end{equation*}
$$

For $\lambda=1,(3.14)$ and (3.15) can be combined to yield

$$
\begin{equation*}
d(n+1, k+1)=n Q_{1}(n-1, k, 1) . \tag{3.16}
\end{equation*}
$$

A1so, if $\lambda=0$ in (3.15), we have

$$
Q_{1}(n, k,-1)=d(n, k)-n d(n-1, k)
$$

In addition

$$
\begin{aligned}
& Q_{1}(n, 0, \lambda)=\langle\lambda\rangle_{n}, \\
& Q_{1}(n, 1, \lambda)=(n-1)!+\binom{n}{1}(n-2)!\langle\lambda\rangle_{1}+\cdots+\binom{n}{n-2} 1!\langle\lambda\rangle_{n-2}, \\
& Q_{1}(n, k, 0)=d(n, k), \\
& Q_{1}(2 k, k, \lambda)=d(2 k, k), \\
& Q_{1}(n, k, \lambda)=0 \text { if } n<2 k .
\end{aligned}
$$

A small table of values is given below.

k	0	$Q_{1}(n, k, \lambda)$	2	3
0	1			
1	λ			
2	$\langle\lambda\rangle_{2}$	1		
3	$\langle\lambda\rangle_{3}$	$2+3 \lambda$	3	
4	$\langle\lambda\rangle_{4}$	$6+14 \lambda+6 \lambda^{2}$		
5	$\langle\lambda\rangle_{5}$	$24+70 \lambda+50 \lambda^{2}+10 \lambda^{3}$		
6	$\langle\lambda\rangle_{6}$	$120+404 \lambda+375 \lambda^{2}+130 \lambda^{3}+15 \lambda^{4}$	$130+65 \lambda+45 \lambda^{2}$	15

It follows from (3.13) that

$$
\begin{equation*}
k!\sum_{n=0}^{\infty} Q_{1}(n, k, \lambda) \frac{x^{n}}{n!}=(1-x)^{-\lambda}(-\log (1-x)-x)^{k}, \tag{3.17}
\end{equation*}
$$

and from Theorem 2.1, that

$$
\begin{equation*}
R_{1}(n, n-k, \lambda)=\sum_{j=0}^{k} Q_{1}(2 k-j, k-j, \lambda)\binom{n}{2 k-j}, \tag{3.18}
\end{equation*}
$$

which shows that $R_{1}(n, n-k, \lambda)$ is a polynomial in n of degree $2 k$. Equation (3.18) a1so shows that $R^{\prime}(n, k, \lambda)=Q_{1}(2 n-k, n-k, \lambda)$, where $R_{1}^{\prime}(n, k, \lambda)$ is defined by Carlitz in [2].

Letting $y=1$ in (3.13), we have

$$
\sum_{k=0}^{[n / 2]} Q_{1}(n, k, \lambda)=\sum_{t=0}^{n}(-1)^{n-t}\binom{n}{t}\langle\lambda+1\rangle_{t},
$$

and more generally,

$$
\sum_{k=0}^{[n / 2]} Q_{1}(n, k, \lambda) y^{k}=\sum_{t=0}^{n}(-y)^{n-t}\binom{n}{t}\langle\lambda+y\rangle_{t} .
$$

A combinatorial interpretation of $Q_{1}(n, k, \lambda)$ follows. Let λ be a nonnegative integer and let $B_{1}, B_{2}, \ldots, B_{\lambda}$ denote λ open boxes. Let $P_{1}(n, k, \lambda)$ denote the number of permutations of Z_{n} with k cycles such that each cycle contains at least two elements, with the understanding that an arbitrary number of elements of Z_{n} may be placed in any number (possibly none) of the boxes and then permuted in all possible ways in each box. We call these λ_{1} permutations. Clearly, $P_{1}(n, k, 0)=d(n, k)$.

If i elements are placed in the boxes, there are $\binom{n}{i}$ ways to choose the elements and then $\lambda(\lambda+1)(\lambda+2) \ldots(\lambda+i-1)$ ways to place the elements in the boxes. The number of such permutations is $\binom{n}{i}\langle\lambda\rangle_{i} d(n-i, k)$. Hence,

$$
\begin{equation*}
P_{1}(n, k, \lambda)=\sum_{m=0}^{n}\binom{n}{m}\langle\lambda\rangle_{m} d(n-m, k)=Q_{1}(n, k, \lambda) . \tag{3.19}
\end{equation*}
$$

It is clear from (3.6) and the above comments that $\bar{d}(n, k+1, \lambda)$ is the number of λ_{1} permutations of Z_{n} with k cycles such that at least two elements of Z_{n} are placed in the open boxes. Definition (3.3) furnishes another combinatorial interpretation of $\bar{d}(n, k, \lambda)$.

We note that some of the definitions and formulas in this section can be generalized in terms of the r-associated Stirling numbers of the first kind $d_{r}(n, k)$. These numbers are defined by means of

$$
\left(-\log (1-x)-\sum_{i=1}^{r} \frac{X^{i}}{i!}\right)^{k}=k!\sum_{n=0}^{\infty} d_{r}(n, k) \frac{X^{n}}{n!},
$$

and their properties are discussed in [3] and [6]. Using the methods of this section, we can define functions $d_{r}(n, k, \lambda)$ and $Q^{(r)}(n, k, \lambda)$ which reduce to $\bar{S}_{1}(n, k, \lambda)$ and $R_{1}(n, k, \lambda)$ when $r=0$, and to $\bar{d}(n, k, \lambda)$ and $Q_{1}(n, k, \lambda)$ when $r=1$. The combinatorial interpretations and formulas (3.3)-(3.6), (3.11)(3.14), and (3.17) can all be generalized.

REFERENCES

1. L. Carlitz. "Weighted Stirling Numbers of the First and Second Kind—I." The Fibonacci Quarterly 18 (1980):147-62.
2. L. Carlitz. "Weighted Stirling Numbers of the First and Second Kind—II." The Fibonacci Quarterly 18 (1980):242-57.
3. C. A. Charalambides. "The Generalized Stirling and c Numbers." Sankhy \bar{a} : The Indian Journal of Statistics 36 (1974):419-36.
4. L. Comtet. Advanced Combinatorics. Dordrecht: Reide1, 1974.
5. E. A. Enneking \& J. C. Ahuja. "Generalized Bell Numbers." The Fibonacci Quarterly 14 (1976):67-73.
6. F. T. Howard. "Associated Stirling Numbers." The Fibonacci Quarterly 18 (1980):303-15.
7. F. T. Howard. "A Theorem Relating Potential and Bell Polynomials." Discrete Mathematics 39 (1982):129-43.
8. F. T. Howard. 'Weighted Potential and Bell Polynomials." To appear.
9. J. Riordan. An Introduction to Combinatorial Analysis. New York: Wiley,
