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1. INTRODUCTION 

The Stirling numbers of the first and second kind can be defined by 

(-log(l - x))k = kl E ^ C n , k)xn/nl 
n = k 

(1.1) 
(ex - l)k = k\J2s(n9 k)xn/nl 

n = k 

These numbers are well known and have been studied extensively. There are many 
good references for them, including [4, Ch. 5] and [9, Ch. 4, pp. 32-38]. 

Not as well known are the associated Stirling numbers of the first and sec-
ond kind, which can be defined by 

(-log(l - x) - x)k = kl £ d(n9 k)xn/nl 
n = 2k 

(1.2) 
(ex - x - l)k = kl J2 b(n9 k)xn/nl 

n = 2k 

We are using the notation of Riordan [9] for these numbers. One reason they are 
of interest is their relationship to the Stirling numbers: 

^(n, n - k) = J£d(2k - j , k - j)(9.n_ .) 

S(n, n - k) = E h(2k - j , k - O)^^- j) 

j =0 
(1-3) 

k 

J = 0 

Equations (1.3) prove that S1{n9 n - k) and S(n, n - k) are both polynomials in 
n of degree 2k. Combinatorially, d(n9 k) is the number of permutations of 
Zn = {1, 2, ..., n) having exactly k cycles such that each cycle has at least 
two elements; b(n9 k) is the number of set partitions of Zn consisting of ex-
actly k blocks such that each block contains at least two elements. Tables for 
d(n9 k) and b(n9 k) can be found in [9, pp. 75-76]. 

Carlitz [1], [_2], has generalized S1(n9 k) and S(n9 k) by defining weighted 
Stirling numbers S1(n9 ks X) and S(n9 k9 A), where X is a parameter. Carlitz 
has also investigated the related functions 

i?i(n, k9 A) = ~S1(n9 k + 1, A) + S1(n9 k) 
(1.4) 

R(n9 k9 X) = S(n9 k + 1, X) + S(n9 k) 

For all of these numbers9 Carlitz has found generating functions, combinatorial 
interpretations, recurrence formulas, and other properties. See [1] and [2] 
for details. 
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The purpose of this paper __is to define, in. an appropriate way, the weighted 
associated Stirling numbers d(n, k, A) and b(n, k> A ) , and to examine their 
properties. In particular, we have the following relationships to Si(n9 k9 A) 
and S(n9 k9 X): 

S1(n, n - k, A) = £ (2k _"• + ^jd{2k - 3 + 1, k - 3 + 1, A) 

+ nXS-tin - 1, n - 1 - k) 

S(n, n - k, \) = £ (2fe _n. + ^b(2k - 3 + 1, k - j + 1, A) 

+ n\S(n - 1, n - 1 - k) 

We also define and investigate related functions Q1(n, k, A) and Q(n, k, A), 
which are analogous to ^(n, k, A) and R(n, k, A). In particular, we define 
Q1(n, k, A) and Q(n, k, A) so that 

R1(n, n - k, A) = £ ^ (2fc - j , k - j , A)(2feW_ .) 

T (i-6) 
i?(n, n - k, A) = £ Q(2k - 3, k - 3, X)(2/ c"_ .) 

which can be compared to (1.3). 
The development of the weighted associated Stirling numbers will parallel 

as much as possible the analogous work in [1] and [2]. In addition to the re-
lationships mentioned above, we shall find generating functions^ combinatorial 
interpretations, recurrence formulas, and other properties of d{n9 k, A ) , b(n9 

k, A ) , Q 1(n, k, A ) , and Q(n, k9 A ) . 

2. THE FUNCTIONS d(n, k, X) AND b(n, k, A) 

Let n, k be positive integers, n > k9 and k2, k3, ..., kn nonnegative such 
that 

k = k2 + k3 + ••• + kn 

(2.1) 
n = 2k2 + 3k3 + ••• + nkn. 

Put 
b(n; k2i ..., kn; A) = E(fc2A2 + M 3 + " ''" + &«*") (2.2) 

where the summation is over all the partitions of Zn = {1, 2, ..., n] into k2 

blocks of cardinality 2, k3 blocks of cardinality 3, . .., kn blocks of cardi-
nality n. Then, following the method of Carlitz [1], we sum on both sides of 
(2.2) and obtain, after some manipulation, 

E \ £ b(n; k2, fe3, ...; A ) ^ = z/(eA*- Xx - l)exp{z/(e* - ar - 1)}. (2.3) 
n = l n* fclffc2»-.. 

Now we define 

2>(«, *, *) = Z Z ( M 2 + M 3 + ••• + M*)> (2-4) 
(2.4) 

where the inner summation is over all partitions of Zn into k2 blocks of cardi-
nality 2, k3 blocks of cardinality 3, ..., kn blocks of cardinality n; the outer 
summation is over all k2, k3, . . .', kn satisfying (2.1). 
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By (2.3) and (2.4), we have 

£ 6 ( n , k, X)ff t/fe = y(eXx - Xx - l)exV{y(e* - x - 1 ) } , (2 .5 ) 

and from (2 .5 ) we o b t a i n 

fc!£ i ( n , fc + 1, X ) ^ = (eXx - Xx - 1) (ex - x - l)k . (2 .6 ) 
n = 0 ™ 'n\ 

It follows from (1.2) and (2.6) that 

n-2&+2 

i ( n , k, X) = £ ( " ) ^ & ( w - * , fc - 1 ) . (2 .7 ) 

For X = 1, (2 .6 ) reduces to 

k\Eb(n, k + 1, l ) f ^ - (e* - a - 1 ) * + 1 - (fc + l ) l X > ( n , fc + l ) f f . 
n = 0 r i • n = 0 ^ * 

Thus, we have 

bin, k, 1) = kb(n, k). (2 .8 ) 

We also have, by (2.6) and (2.1), 

b(n, 0, X) = 0, 

b(n, 1, X) = X if n > 2, 

5 ( » . 2 . A ) - ( ^ + (5)x» + . . . + ( n » 2 ) x - s 
6(n, A:, X) = 0 if n < 2k, 

b(2k,k, X) = (2^b(2k - 2, k - 1)X2. 

The relationship to 5(n, &, X) is most easily proved by using an extension 
of a theorem in [7]. In a forthcoming paper [8], we prove the following: 

Theorem 2.1: For r > 1 and / + 0, let 

F(x) = £ ^fj 1 and W(x, X) = 1 + £ wt (X)fJ-

be formal power series. Define 5 •(0, ..., 0, /r , fr+l9 • ••) by 

rc = 0 ™ * 

Then (^-)nBfc(^„jn (0, ..., 0, /r , fr+1, ...) = (k + vn) (k + rn - 1) ... (n + 1) 
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It follows from Theorem 2.1 and the generating function for S(n, k9 A) that 
if we define 

(eXx - l)(ex - x - l)k = klf^ain, k + 1, A)^-, (2.9) 
n = 0 n-

then 
k 

'Sin, n - k, A) = £ (2fe _*\ + x)a(2fc - J + l,fc - J + 1, A). (2.10) 

By (2.6) and (2.9), 

a(n, k + 1, A) = &(n5 fc + 1, A) + AnZ?(n - 1, fe), 

and by ( 1 . 3 ) , (2 .10) can be w r t i t e n 

S(n, n - k, A) = £ fc(2fc- J + 1, fc- j+ 1, *)(2£.."- + i) +
 XnS{n- 1, n- 1- fc), 

J' = °  (2.11) 
which proves £(^, n - k, A) is a polynomial in n of degree 2^ + 1. 

It is convenient to define 

Q(n, k, A) = b(n9 k + 1, A) + nA£(n - 1, fc) + 2>(w, fc), (2.12) 

which implies n-ik / N 

m = 0 

Note that Q(n9 k, 0) = &(n, k). 
A generating function can be found. If we sum on both sides of (2.12), we 

have 

X Q(n, k, X)~ yk = V*exp{z/(e* - x - 1)}. (2.14) 
n, k n\ 

If we differentiate both sides of (2.14) with respect to y and compare the 
coefficients of xnyk, we have 

Q(n, k, A + 1) = Q(n, fc, A) + (k + l)<2(n, Zc + 1, A) + nQ(n - 1, fc, A). (2.15) 

If we differentiate both sides of (2.14) with respect to x9 we have 

Q(n + 1, k3 A) = XQ(n, k9 A) + §(n, k - 1, A + 1) - S(n, fc - 1, A). (2.16) 

Combining (2.15) and (2.16), we have our main recurrence formula: 

Q(n + 1, k, A) = (A + k)Q(n, k, A) + nQ{n - 1, k - 1, A). (2.17) 

It follows from (3.4) that 

Q(n, k, 1) = bin, k) + bin + 1, Zc). 

We also have 

«(w, 0, A) = An, 

«». i, A) = ( j ) x ° + ( ^ + ... + ( n : 2 ) x - , 
Qin, k, 0) = i(n, k), 

Q(2k,k, A) = £(2fc, fc), 

S(n, k, A) = 0 if n < 2/c. 
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A small table of values is given below. 

Q(n, k, X) 

\k n \ 
0 

1 

2 

3 

4 

5 

6 

0 

1 

X 

X2 

X3 

xh 

X5 

X6 

1 

1 

1 + 3X 

1 + 4X + 6X2 

1 + 5X + 10X2 + 10X3 

1 + 6X + 15X2 + 20X3+ 15X4 

2 

3 

10 + 15X 

25 + 60X + 45X2 

3 

15 

It follows from (2.14) that 

k!£«(n, k, X)^- = ex*(e* - x - 1) . 
n = 0 Ti. 

(2.18) 

By comparing coefficients of xn on both sides of (2.18), we get an explicit 
formula for Q(n> k, X ) : 

n, k, X) '^jl(^)k'd(^)t[(kl (2.19) Q( 

where {ri)t = n(n - 1) ... (n - t + 1). 
It follows from Theorem 2.1 and the generating function for R(n,k> X) that 

k 
R(n, n - k, X) = £ QW - 3, k - j , ^)(2?,n_ • ) • (2.20) 

which shows that R(n, n - k, X) is a polynomial in n of degree 2k. Equation 
(2.20) also shows that Rf(n, k, X) = Q(2n - k9 n - k, X), where R'in, k, X) is 
defined by Carlitz in [2], 

In [1], Carlitz generalized the Bell number [4, p. 210] by defining 

B(n, X) = £ R(n, k, X). 
k = 0 

This suggests the definition 

A(n, X) = £ £(n, k, X), 
& = o 

which for X = 0 reduces to 

A(n) = £ 2>(n. fc). 
& = o 

The function A(n) appears in [5] and [6]. 
By (2.13), we have 

(2.21) 

(2.22) 

160 

Mn, X) = £ (l)T.Hn - m, k)\m = £ (")xra4(n - m). (2.23) 
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Also by (2.18), 

£ A(n9 X)ff = ex*exV(e* - x - 1), (2.24) 
and (2.24) implies 

E A(n9 A = e^-^expie* - 1) = £ B(n, X - l)ff, 
n=0 n- n=0 nl 

so 
A(n9 X) = B(n, X - 1). (2.25) 

For example, i4(n, 1) = B(n, 0), so 

[<w+l)/2] n 

£ (i(w, fe) + Hn + 1, fc)) = £ S(n, fc). 
k = o k=o 

There are combinatorial interpretations of A(n9 X) and Q(n, k9 X) that are 
similar to the interpretations of B(n9 X) and i?(n, fc, X) given in [1]. Let X 
be a nonnegative integer and let Bl9 B2, . . ., BA denote X open boxes. Let 
P(n, fc, X) denote the number of partitions of Zn into k blocks with each block 
containing at least two elements, with the understanding that an arbitrary num-
ber of the elements of Zn may be placed in any number (possibly none) of the 
boxes. We shall call these X± partitions. Clearly, P(n9 k9 0) = b(n9 k). 

Now, if i elements are placed in the X boxes, there are \j/j ways to choose 
the elements, and for each element chosen there are X choices for a box. The 
number of such partitions is {^i)Xib{n - i9 k). Hence, 

P(n, k, X) = £ H)fb(n - m9 k) = Q(n, k9 X). (2.26) 
m=0Xm/ 

It is clear from (2.26) that A(n9X) is the number of X1 partitions of Zn. 
It is also clear from (2.7) and the above comments that b{n9 k + 1, X) is 

the number of Xx partitions of Zn into k blocks such that at least two elements 
of Zn are placed in the open boxes. Definition (2.4) furnishes another combi-
natorial interpretation of b{n9 k9 X). 

Finally, we note that some of the definitions and formulas in this section 
can be generalized in terms of the r-associated Stirling numbers of the second 
kind br(n9 k). These numbers are defined by means of 

/ Yi\k °°  Yn 

\ i = Q u' I • n = Q n' 

and their properties are examined in [3], [5], and [6], Using the methods of 
this section, we c_an define functions br(n, k, X), Q^r)(n9 k, X) and A(r\n9 X) 
which reduce to S(n9 k9 X), R(n3 k9 X), and B(n9 X) when r = 0, and reduce to 
b(n, k9 X), Q(n9 k, X), and A(n9 X) when r = 1. The combinatorial interpreta-
tions and formulas (2.4)-(2.7), (2.10), (2.11), (2.17), (2.18), (2.22), (2.23) 
can all be generalized. 
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3. THE FUNCTIONS d(n, k, X) AND Q1{n, k, X) 

We define (\)3- = X(X + 1) ... (X + j - 1). Now put 

^ / <A)2 (X)n \ 
d(n; k23 ..., kn; X) = E (̂2 —jy + "•" + kn (n _ ̂ t h (3.1) 

where the summation is over all permutations of Z„s 

n = 2fc2 + 3k3 + ••• + nkn, 

with k2 cycles of length 2, k3 cycles of length 3, . .., kn cycles of length n. 
Then, as in [1], we sum on both sides of (3.1) and obtain, after some manipu-
lation, 

E ZT E d(n; k2, k3, ...; X)yk 

n = 2 n' kz, k3, ... (3.2) 

= z/((l - a?)~A - Xx - l)exp{z/(-log(l - a:) - a?)L 

We now define 
^ ^ / <X>2 <X)o <X>n \ 

d(n, k, X) - E E ^ . - j y ^ + fes " 2 T + ••' + fe„ (n , i).)v (3-3> 

where the inner summation is over all permutations of Zn with k2 cycles of 
length 2, k3 cycles of length 3, ..., kn cycles of length n; the outer summa-
tion is over all k2i k3, ..., kn satisfying (2.1). 

By (3.2) and (3.3), we have 

E d(n, k, X)^f y* = 2/((l - x)'x - Xx - l)exp{z/(-log(l - x) - x)} ( 3 ^ 
U'k = 2/((l - ^ ) " A - Xa: - 1)(1 - ar)~2Va:!', 

and from (3.4), we obtain 

k\ E J(n, k + 1, X ) — = ((1 - aO~A - Aa? - l)(-log(l - x) - ar)*. (3.5) 
n = 0 n 

It follows from (1.2) and (3.5) that 

_ n-2k + m . . 

d(n, fc, X) - £ r)d(n - m, k - l)(\)m. (3.6) 

For X = 1, (3.4) reduces to 

E d(n9 k, 1 ) — z/ = z/((l - a?)~ - a? - l)exp{z/(-log(l - a?) - ar)} 
n-0 • 

=-7^ exp{z/(-ln(l - a?) - ar)} - aa/ exp{ (?/(-log(l - x) - x)} 

Thus, we have 

J(n, fc, 1) = d(n + 1, k) - nd(n - 1, /c - 1) = nd(n, fc). (3.7) 
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We also have, by (3.5) and (3.6), 

d(n9 0, A) = 0 

d(n, 1, A) = <A)n if n > 2, 

d(n, 2, A) =(^)(n - 3)!<A)2 + (*)(w - 4)!<A>3 + ... + (̂  * 2)l!<A>n_2, 

J(n, fe, A) = 0 if n < 2fe, 

d(2k,k, A) = (22^(2^c - 2, fe - 1)<A>2. 

_ To find the relationship to 5x(n, fe, A), we use Theorem (2.1). We define 
c(n9 fe, A) by 

((1 - * ) ~ A - l)(-log(l - x) - x)k = fe!l>(n, k + 1, A)f^. (3.8) 

5i(n, w - fe, A) = X (2fe - j + ip(2k - J + 1, fe - J + 15 A). (3.9) 

(3.10) 

Then by Theorem 2.1 and the generating function for Sx(n9 fe, A), 

k 

^o^fe - J 

By (3.5) and (3.8), 

o(n9 fe + 1, A) = d(n, fe + 1, A) + Xnd(n - 1, fe), 
so by ( 1 . 3 ) , e q u a t i o n (3 .9 ) can be w r i t t e n 

~S1(n9 n - fe, A) = ]£ ^"(2fe - J + 1, fe - J + 1, A)(2fe - ^ + l ) 

+ AnS^(n - 1, n - 1 - fe), 

which proves S1(n9 n - fe, A) is a polynomial in n of degree 2fe + 1. 
We now define the function Q1{n9 fe, A) by means of 

«i(n, fe, A) = d(n9 fe + 1, A) + d(n9 fe) + n d(n - 1, fe). (3.11) 

then by (3.6), 
n-2k , v 

«i(«. fe, A) = 2 (")<*(" - m, fe)<X)m. (3.12) 
m = 0 X ' 

Note that ^(n, fe, 0) = <f(n, fe). 
A generating function can be found by summing on both sides of (3.11). We 

have 
E «i(n» &> ) ? 2/ = (1 " *rAexp{2/(-log(l - ar) - ar)} 
n,k n (3.13) 

= (1 - a?)- x-^-^. 

If we differentiate (3.13) with respect to x9 multiply by 1 - x9 and then 
compare coefficients of xnyk, we obtain 

Q1(n + 1, fe, A) = (A + n)Q1(n9 fe, A) + nQl(n - 1, fe - 1, A). (3.14) 

If we multiply both sides of (3.13) by 1 - x and compare coefficients xnyk
 9 

we have 
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Qxin9 k9 X - 1) = Q1(n9 k9 X) - nQ\(n - 1, k, X). 

For X = 1, (3.14) and (3.15) can be combined to yield 

d(n + 1, k + 1) = nS1(n - 1, &, 1). 

Also, if X = 0 in (3.15), we have 

Q1(n9 ks -1) = d(n9 k) - nd(n - 1, k). 

In addition 

(3.15) 

(3.16) 

d(w, 0, X) = <X)n, 

ex(n, 1, X) = (n - 1)! + (*)(n - 2)!<X)1 + 

ex(n, fc, 0) = d(n9 k), 

Q1{2k9k9 X) = d(2k, k), 

Q1(ri9 k9 X) = 0 if n < 2k. 

A small table of values is given below. 

Q1(n9 k, X) 

+ ( n % ) 1 ! < A ) - ^ 

0 

1 

2 

3 
4 

5 

6 

0 

1 

X 

< x ) 2 

<*>3 

<x\ 
U>5 
<*>6 

1 

1 

2 + 3X 

6 + 14X + 6X2 

24 + 70X + 50X2 + 10X3 

120 + 404X + 375X2 + 130X3 + 15X4 

2 

3 

20 + 15X 

130 + 65X + 45X2 

3 

15 

I t fo l lows from (3 .13) t h a t 

fclZdCn, k9 \y~Y = (1 - ^ ) - A ( - l o g ( l - x) - x)k, (3.17) 

and from Theorem 2.1, that 

R^n, n - k9 X) = £ Gi(2fc - J, k - J, X ) ^ ^ . ) , (3.18) 

which shows that R1{n9 n - k9 X) is a polynomial in n of degree 2k* Equation 
(3.18) also shows that Rr(n9 k9 X) = Q1(2n - k9 n - k9 X), where R[{n9 k9 X) is 
defined by Carlitz in [2]. 

Letting y = 1 in (3.13), we have 

164 

in/2] 

k = o 

n/2] n . x 

E ^ ( n , k, \) - Z (-l)n-*(")<X + l>t, 
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and more generally, 

E « i ( » . *. W = E ( - y ) n - * ( " ) < x + t / ) t . 
k=o t=o ^^/ 

A combinatorial interpretation of Q1(n9 k, X) follows. Let X be a nonnega-
tive integer and let Bl9 B2, . . ., Bx denote X open boxes. Let P1(n9 k9 X) 
denote the number of permutations of Zn with k cycles such that each cycle con-
tains at least two elements, with the understanding that an arbitrary number of 
elements of Zn may be placed in any number (possibly none) of the boxes and then 
permuted in all possible ways in each box. We call these X permutations. 
Clearly, P1(n9 k, 0) = d(n, k). 

If i elements are placed in the boxes, there are ( •] ways to choose the 
elements and then X(X + 1) (X + 2) ... (X + i - 1) ways to place the elements 
in the boxes. The number of such permutations is (Jl.} (X)id(n - i9 k) . Hence, 

Pi(n, k, X) = £ (")<A>md(n - m9 k) = Q±(n9 k9 X). (3.19) 
772=0 ^ l / 

It is clear from (3.6) and the above comments that d(n9 k + 1, X) is the 
number of Xx permutations of Zn with k cycles such that at least two elements 
of Zn are placed in the open_ boxes. Definition (3.3) furnishes another combi-
natorial interpretation of d(n, k, X). 

We note that some of the definitions and formulas in this section can be 
generalized in terms of the p-associated Stirling numbers of the first kind 
dr(n, k). These numbers are defined by means of 

-log(l - x) - Z JTj = klZdr(n9 k)j^9 
\ i=l u-I n=0 n' 

and their properties are discussed in [3] and [6]. Using the methods of this 
section, we can define functions dr(n9 ks X) and Q^(n9 k9 X) which reduce to 
~S1(n9 k9 X) and R1(n9 k9 X) when r = 0, and to d{n9 k9 X) and Q1(n9 k9 X) when 
r = 1. The combinatorial interpretations and formulas (3.3)-(3.6), (3.11)-
(3.14), and (3.17) can all be generalized. 
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