ON THE ASYMPTOTIC PROPORTIONS OF ZEROS AND ONES
 in Fibonacci sequences

PETER H. ST. JOHN
Computer Sciences Corp., Piscataway, NJ 08854
(Submitted July 1982)

By "Fibonacci sequence" we mean a binary sequence such that no two one's, say, are consecutive, with unrestricted first entry; hence, the number of such sequences of length n is f_{n+1}.

It is understood that

$$
\begin{align*}
f_{n} & =c \alpha^{n}+\overline{c o}^{n} \text { with } \alpha=\frac{1+\sqrt{5}}{2} \text { (the "golden ratio"), } \tag{1}\\
c & =\frac{5+\sqrt{5}}{10}, \bar{\alpha}=1-\alpha \text { and } \bar{c}=1-c .
\end{align*}
$$

We denote by p and q the asymptotic proportions of zeros and ones, respectively, in Fibonacci sequences, so that $p+q=1$. We will show

Theorem:

$$
\begin{equation*}
p=c \text { and } q=\bar{c} . \tag{2}
\end{equation*}
$$

Let ω_{n} be the total number of ones in all Fibonacci sequences of length n; hence, $\omega_{0}=0$ and $\omega_{1}=1$. Since the total number of ones in all n-sequences is the number in all ($n-1$)-sequences, with zeros appended to the ends, plus the number in all (n - 2)-sequences, with zero-ones appended, plus the number of ones in those zero-ones, we have

$$
\begin{equation*}
\omega_{n}=\omega_{n-1}+\omega_{n-2}+f_{n-1} \tag{3}
\end{equation*}
$$

We know that such a recursion [1, p. 101] gives

$$
\begin{equation*}
\omega_{n+1}=\sum_{k=0}^{n} f_{k} f_{n-k} \tag{4}
\end{equation*}
$$

The proportion of ones is the number of ones divided by the number of en-tries- n per sequence times f_{n+1} sequences-so we define

$$
\begin{equation*}
q_{n}=\frac{\omega_{n}}{n f_{n+1}} \quad \text { and } \quad q=\lim _{n \rightarrow \infty} q_{n} \tag{5}
\end{equation*}
$$

Clearly, the limit exists and is less than $1 / 2$, as the ones are restricted but the zeros are not.

From (1) and (4), we have

$$
\begin{align*}
& \omega_{n+1}=\sum_{k=0}^{n}\left(c \alpha^{k}+\overline{c \alpha}^{k}\right)\left(c \alpha^{n-k}+\overline{c \alpha}^{n-k}\right) \tag{6a}\\
& \omega_{n+1}=(n+1)\left(c^{2} \alpha^{n}+\bar{c}^{2} \bar{\alpha}^{n}\right)+c \bar{c} \sum_{k=0}^{n}\left(\alpha^{k} \bar{\alpha}^{k-n}+\alpha^{n-k} \bar{\alpha}^{k}\right) . \tag{6b}
\end{align*}
$$

As $\alpha \bar{\alpha}=-1$, the indexed sum on the right of (6b) is

ON THE ASYMPTOTIC PROPORTIONS OF ZEROS AND ONES IN FIBONACCI SEQUENCES

$$
\begin{equation*}
c \bar{c} \sum_{k=0}^{n}\left[(-1)^{k} \bar{\alpha}^{n-2 k}+(-1)^{k} \alpha^{n-2 k}\right] \tag{7a}
\end{equation*}
$$

and by inverting the order of summation on the left,

$$
\begin{equation*}
2 c \bar{c} \sum_{k=0}^{n}(-1)^{n-k} \alpha^{n-2 k} \tag{7b}
\end{equation*}
$$

which is clearly less than

$$
\begin{equation*}
\frac{\alpha^{2 n+2}-1}{\alpha^{n}\left(\alpha^{2}-1\right)} 2 c \bar{c}=o\left(n \alpha^{n}\right) \tag{7c}
\end{equation*}
$$

where $f(n)=o(g(n))$ means $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$.
Substituting (7c) into (6b), and thence into (5), we have

$$
\begin{equation*}
q_{n+1}=\frac{c^{2} \alpha^{n}+\bar{c}^{2} \bar{\alpha}^{n}}{c \alpha^{n+2}+\overline{c \alpha}^{n+2}}+o(1) \tag{8}
\end{equation*}
$$

as $\alpha>1$ and $|\bar{\alpha}|<1$, and taking $n \rightarrow \infty$,

$$
\begin{equation*}
q=\frac{c}{\alpha^{2}}=\frac{5+\sqrt{5}}{10} \cdot \frac{2}{3+\sqrt{5}}=\frac{5-\sqrt{5}}{10}=\bar{c} \tag{9}
\end{equation*}
$$

and hence the theorem.

ACKNOWLEDGMENT

The author wishes to thank Mr. Hugh Bender for providing helpful numerical evidence.

REFERENCE

1. John Riordan. Combinatorial Identities. New York: Wiley, 1968.
