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INTRODUCTION 

Let n be a natural number, p a prime. Following Lucas [4], let A and B be 
integers such that 

(i) 04, B) = 1 and D = ̂ 2 + 45 ̂  0. 

Let the roots of (ii) #2 = Ax + 5 be 

(iii) a = |(,4 + D1 / 2), £ = -04 - D1/2). 

Consider the sequences 

(iv) un = (an - bn)/(a - b), yn = an + £n. 

If i4 = £ = 1, then un, Vn are the Fibonacci and Lucas sequences, respec-
tively. If A = 3 and 5 =-2, then un, t;n are the Mersenne and Fermat sequences, 
respectively. If A = 2 and 5 = 1 (so that Z? = 8), then un is called the Pell 
sequence (see [4, p. 187]), and is denoted Pn; vn may be called the secondary 
Pell sequence, and denoted i?n, following [7]. For the sake of convenience, we 
occasionally write u(n) instead of un and P(n) instead of Pn. Table 1, below, 
lists Pn and Rn for 1 < rc < 50. 

TABLE 1 

1 1 2 
2 2 6 
3 5 14 
4 12 34 
5 29 82 
6 70 198 
7 169 478 
8 408 1154 
9 985 2786 
10 2378 6726 
11 5741 16238 
12 13860 39202 
13 33461 94642 
14 80782 228486 
15 195025 551614 
16 470832 1331714 
17 1136689 3215042 
18 2744210 7761798 
19 6625109 18738638 
20 15994428 45239074 
21 38613965 109216786 3̂ 0 [Nov. 
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TABLE 1 (continued) 

n 

22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

Pn 

93222358 
225058681 
543339720 
1311738121 
3166815962 
7645370045 
18457556052 
44560482149 
107578520350 
259717522849 
627013566048 
1513744654945 
3654502875938 
8822750406821 
21300003689580 
51422757785981 
124145519261542 
299713796309065 
723573111879672 
1746860020068409 
4217293152016490 
10181446324101389 
24580185800219268 
59341817924539925 
143263821649299118 
345869461223138161 
835002744095575440 
2015874949414289041 
4866752642924153522 

Rn 

263672646 
636562078 
1536796802 
3710155682 
8957108166 
21624372014 
52205852194 
126036076402 
304278004998 
734592086398 
1773462177794 
4281516441986 
10336495061766 
24954506565518 
60245508192802 
145445522951122 
351136554095046 
847718631141214 
2046573816377474 
4940866263896162 
11928306344169798 
28797478952235758 
69523264248641314 
167844007449518386 
405211279147678086 
978266565744874558 
2361744410637427202 
5701755387019728962 
13765255184676885126 

All solutions of the Pell equations x2 - 2y2 = ±1 such that x > y > 0 are 
given, respectively, by 

(Xn9 yn) =\-^R2n' P2n)> \2R2n-l> P 2n - ij * 

Furthermore, if (x, x-hl9 z) is a Pythagorean triple, then there exists n such 
that z = P2n+1* while 

{x, x + 1} = {Pn2+1 - Pn\ 2PnPn + 1}. 

These results follow from [8, pp.'44-48 and 94-98]. 
In [3], W. Ljunggren proved that if x > y > 0 and x - 2y = -1, then 

(x, y) = (1, 1) or (239, 13). 

From this result, it follows that if Pn = x2 with x > 0, then 

(n, x) = (1, 1) or (7, 13). 

In this article, we consider the equations 

Pn = px2
a (*) 
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We obtain all solutions such that p = 3 (mod 4) or p < 1000. The method used 
here is similar to the method used in [6] to find Fibonacci numbers of the same 
form. (m/p) is the Legendre symbol. 

Defini t ion 1: z(n) = min{fc : n\uk}; 2*(n) = m±n{k : n\Pk]. 

Definition 2: y(p) is the least prime divisor of s(p). 

PRELIMINARY RESULTS 

s*(2) = 2 

s*(3) = 4 

s*(5) = 3 

s*(7) = 6 

2*(13) = s*(132) = 7 

s*(29) = 5 

I f Z) ^ s 2 , t h e n s ( p ) | ( p - e) , where e = 

p |w n i f f s ( p ) | n ; p\Pn i f f s * ( p ) | n 

(£ /p) i f p\D 

0 i f p | # 

"• 2n+l 

(?m> PJ 

P2 + P: 

- (m, n) 
r In 

(P, 

Pn^n 

i s odd 
i s even 

> E ) = [l ±£ n i 
n> nn> \ 2 i f Yl i 

Rn = 2 (mod 4) for a l l n 

(}i?n)2 - 2P„2 = (-1)" 
un\ukn y Pn \Pkn 
I f m i s odd, t hen Rn ^ ms2 

I f p = 3 (mod 4 ) , t h e n z*(p) i s even 

/wn)]fc; ( P n , PknJPn)\k 

I f x 4 - 2z/2 = ( - l ) n , t h e n n i s odd and x2 

Rn = 2#2 i m p l i e s n = 1 

Pn = x2 i m p l i e s n - 1 or 7 

I f p i s odd and pk\\un, t h e n p k + 1 | | w p n 

= 1 

Remarks: Results (1) through (6) may be verified by examining the first seven 
entries in Table 1. (7) through (15) are elementary and/or well known. (16) 
follows from (13). (17) follows from (9), (10), Definition 1, and [2, Theorem 
367, p. 299]. (18) is Theorem 2 in [5]. (19) is proved in [8, p. 98]. (20) 
follows from (14) and (19). (21) follows from (14) and the result of Ljunggren 
mentioned above. (22) follows from [1, Theorem X, p. 42], 
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THE MAIN THEOREMS 

Theorem 1 

„2 Pn = 2x implies n = 2. 

Proof: Hypothesis, (1), and (8) imply n = 2m, so that (11) implies 

If 777 is even, then (12) implies 
PA = 2* 

But \ 2^m 5 2^m / 

(lPm)(|i?m)=2(|x)2. 

Now (13) implies ~^Rm = s2, so that (20) implies m = 1, a contradiction. If w 

is odd, then (12) and (16) imply Pm = r2, Rm = 2s2. Now (20) implies m = 1, so 

w = 2. 

Theorem 2 

If p is odd and Plm = px2, then p = 3 and 2w = x2 = 4. 

Proof: Hypothesis and (11) imply PmRm = px2. If 77z is odd, then (12) im-
plies Rm = s2 or ps2, contradicting (16). If m is even, then (12) implies 

But 
( ip ip U i 

( ip . ) ( i . . )=p(i«) 2 

Therefore, Pm or Pm = 2s . Now (20) and Theorem 1 imply m = 2, so that 

P2m = ?» = 12 - 3 ( 2 ) 2 -

Corollary 1 

If p is odd, z*(jp) is even, and Pn = px2, then p = 3 and n = x2 = 4. 

Proof: Hypothesis and (8) imply n is even, so that the conclusion follows 
from Theorem 2. 

Corollary 2 

If p = 3 (mod 4) and Pn = px2, then p = 3 and n = x2 = 4. 

Proof: Follows from hypothesis, (17), and Corollary 1. 

If p > 5, then the investigation of (*) is facilitated by Lemmas 1 and 2 
below, which hold for general sequences un, Vn which satisfy (i) through (iv) 
above, where D ^ s2. 
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Lemma 1 

Suppose p is odd, pfm, and ci = u{mp'L) lu(mp'L~1) for i > 1 . If i < j, then 

'p if p|# 

.1 if p\B. 

Proof: Let d = (^ , £j)» where i < j . Therefore, d\oi 9 d\c-> and d\u(mpi) • 
Now hypothesis and (15) imply d\u(mpJ'~1) , so 

df| (wCmp^'"1), u(mpc') /u(mp3~1)). 

Therefore, (18) implies d|p. If p̂ Z?» then (7) and (8) imply p\u(p) , so that 

(15) implies p^u(mpi). Therefore, p|ds so d = 1. If p|p, then (7) and (8) 

imply p\u(p) . Now (22) implies p\oi and p\ej , so p|d, and d = p. 

Lemma 2 

If un = pxr, z/(p) = qs a prime, and (pq, D) = 1, then n = qkm, where k > 1 
and (s, m) = 1 for all primes, s, such that s < q9 and, furthermore, pHum, If 
also q\umi then uw = cp and there is an integer, t, such that 1 < t ^ k, and 
for all j such that 1 < j < /c, we have 

r p x j if j = t 
u(mqJ) luimqj'1) - < 

I a;J if j + t. 

Proof: Hypothesis, (8), and Definitions 1 and 2 imply n = qkm> k ^ 1, and 
(s, m) ~ 1 for all primes, s, such that s < q. (8) implies p\um. Let 

d = (wOT, un/um). 

If q\umi then (18) implies <i = 1. Since (um) (un/um) = pxp, we have ww = <?r and 
unlum = pw2'. For each j such that 1 < j < /c, let a- = u(mqJ) /uimqj'1) . Now 

u„/wm = II a,, 
j-i J 

so that 

(1/p) ft ̂ = W . 
3 = 1 

Lemma 1 implies the factors on the left side of this last equation are pairwise 
coprime; the conclusion now follows. 

Theorem 3 

If Pn = 5x2, then n = 3. 

Proof: Hypothesis, (3), (8), and Lemma 2 imply n = 3fe?72 and (6, m) = 1. 
Therefore, (2) and (8) imply 3](Pm. Now Lemma 2 implies Pm = s2, so (21) implies 
in = 1 or 7. Lemma 2 implies P3m/Pm = s2 or 5s2. Since P21/P7 = 5*45697 ^ s2, 
5s2j we must have m = 1. If fc > 2, then Lemma 2 implies 197 = Ps/P3 = s2, an 
impossibility. Therefore, fe - 1, so n = 3. 
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Theorem k 

If Pn = 29x2, then n = 5. 

Proof: Hypothesis, (6), (8), and Lemma 2 imply n = 5km and (30, HZ) = 1. 
Therefore, (3) and (8) imply 5|Pm. Now Lemma 2 implies Pw = s2, so (21) implies 
m = 1 or 7. Lemma 2 implies Ps^/P^ = s2 or 29s2. Since 

P35/P7 = 29*1800193921 ^ s2, 29s2, 

we must have m = 1. If fc > 2, then Lemma 2 implies 45232349 = P25/P5 = s2, an 
impossibility. Therefore, k = 1, so n = 5. 

Lemma 3 

If Pw = px2, where n = 7^, & > 1, and (14, m) = 1, then Pm = px2. 

Proof: Let d = (Pw, Pn/Pm)» Hypothesis, (4), and (8) imply l\Pm, so l\&. 
Now (18) implies d = 1, so Pm = x2 or px2. If Pm = x2, then hypothesis and (21) 
imply /?i = 1, so n = 7fc. Since 

P7 = 132 + px2, 
we must have k ^ 2. But then Lemma 2 implies 

293*40710764977973 = Pks/P7 = x2 or px2, 

an impossibility. Therefore, we must have Pm = px2. 

Corol1ary 3 

Pn + 13x2. 

Proof: If Pn = 13x2, then (5) and (8) imply n = 7fe??7, l\m. Theorem 2 im-
plies m is odd, so Lemma 3 implies Pm = 13x2, contradicting (5) and (8). 

Theorem 5 

Let Pn = px2, where p and 3*(p) are odd. Then there exists a prime, ts such 
that Pt = pi/2. In fact, £ = s*(p). 

Proof: If n is prime, then t = n and x2 = y2* Therefore, assume n is com-
posite. Hypothesis and Theorem 2 imply n is odd. (1) and (8) imply Pn is odd, 
so x is odd. If n = 7̂777, 7|w, then Hypothesis and Lemma 3 imply Pm = pxj. So 
without loss of generality assume 7Jn, so that if <i|n, then d £ 7. 

Case 1 Suppose there exists d such that d\ns I < d < n, and z*(p)\d. Then 

(8) implies pfP^. Since <2 + 7, (21) implies Pd ^ s2. Therefore, there exists 

a prime, q1, such that q± + p and c?2/1""1 || Pd - Now, (15) implies q^'1"1 \ Pn , so 

that g^'i'1 | #2. This implies that q2^1] x2, so that ^2j'i | Pn . But (22) implies 

q[* \\Pdqi- Therefore, q2Ji\ (Pn,Pdqi)* Now, (10) implies q\h\ P{rLidqiy Since 

^2j'1"1||P^, we must have (ns dqx) > d, so that (n/d9 q±) > 1. Therefore, ̂ 1|n/i 

and q1\n. Since ^ ^ 7, (21) implies P(q±) + s2. Thus, there exists a prime, 

q , such that q2^'2'1 \\ Piq^) . If the only such prime is p, then 
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so that t = q± • If q ^ p, then q2^~x\ x2, so that by reasoning as above we 

obtain q9\n. Continuing in like fashion, we obtain a sequence of primes: q , 

<72> <735 etc., such that g.|P(<?. ,) and either q.|n or q̂  = p for i > 2. Since 

the q. are all odd, (7) and (8) imply q. 4- q. - Now (10) implies that the q. 

are all distinct. Since n has only finitely many divisors, there must exist r 

such that q = p, and thus q _ = t. 

Case 2 Suppose that s*(p)\d for all d such that d\n and 1 < d < n. Then 

s*(p) = q is a prime and n = qfc. Now Lemma 2 implies Pq = x2 or p^2. (21) im-

plies Pq 4 oc2, so Pq = px2 and t = q. In either case, since p\Pt , (8) implies 

£*(p)|t. Since £ is prime, we must have g*(p) = t. 

Lemma 4 

Suppose s*(p) = q, a prime, and q > 3. If p = ±2 (mod 5), then 

if p = 3, 5, or 6 (mod 7), then 

( ^ ) -
Proof: Hypothesis implies c? = ±1 (mod 6) , so that Pq - ±1 (mod 5) and Pq 

(mod 7). If p = ±2 (mod 5), then 

>P~% 
(-1)1 = -1. (^Mzm-m) If p = 3, 5, or 6 (mod 7), then 

'P'%\ /n-^/Pc i^)-KB)-m)-™-->-
Lemma 5 

Suppose 2*(p) = q, a prime, and q > 3. If either 

(i) (-|y) = -1 and q = ±1 or ±7 (mod 24), or 

(ii) (̂ -) = 1 and q E ±5 or ±11 (mod 24), 

Proof: If (i) holds, then Pq = 1 or 4 (mod 11), so f-̂ -j = 1; if (ii) holds, 
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then Pq E 7 or 10 (mod 11), so f^y) = -1. Therefore, 

Theorem 6 

If Pn = p^2 and p < 1000, then (n, p) = (2, 2), (45 3), (3, 5), or (5, 29). 

Proof: By Theorems ls 3, 4, and 5, and Corollaries 2 and 3, we need only 
consider those primes p, such that 37 < p < 1000, p E 1 (mod 4), and z* (p) = <7 
is prime. Examining Table 2 below, we see that these primes are: 

37, 61, 137, 157, 229, 277, 397, 421, 541, 569, 593, 
613, 661, 677, 733, 757, 821, 853, 857, 877, 997. 

Lemma 4 implies that p~1Pq is a quadratic nonresidue (mod 5) or (mod 7) except 
for p = 421, 541, 569, and 821. In each of these four latter cases, Lemma 5 
implies that p~ Pq is a quadratic nonresidue (mod 11). Therefore, in no case 
does Pq = px2. 

TABLE 2 

PELL ENTRY POINTS OF PRIMES, p, SUCH THAT p = 1 (mod 4), p < 1000 

V 

5 
13 
17 
29 
37 
41 
53 
61 
73 
89 
97 
101 
109 
113 
137 
149 
157 
173 
181 
193 

3*(P) 

3 
7 
8 
5 
19 
10 
27 
31 
36 
44 
48 
51 
55 
28 
17 
75 
79 
87 
91 
96 

P 

197 
229 
233 
241 
257 
269 
277 
281 
293 
313 
317 
337 
349 
353 
373 
389 
397 
401 
409 
421 

3*(P) 

9 
23 
116 
40 
64 
15 
139 
140 
49 
78 
159 
28 
175 
22 
187 
39 
199 
200 
102 
211 

V 

433 
449 
457 
461 
509 
521 
541 
557 
569 
577 
593 
601 
613 
617 
641 
653 
661 
673 
677 
701 

**(P) 

216 
224 
114 
231 
255 
65 
271 
279 
71 
16 
37 
60 
307 
308 
320 
327 
331 
336 
113 
351 

P 

709 
733 
757 
761 
769 
773 
797 
809 
821 
829 
853 
857 
877 
881 
929 
937 
941 
953 
977 
997 

**(P) 

355 
367 
379 
190 
384 
129 
399 
202 
137 
415 
61 
107 
439 
220 
464 
468 
471 
119 
488 
499 
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