ON THE REDUCTION OF A LINEAR RECURRENCE OF ORDER r
 DORIN ANDRICA
 "Babes-Bolyai" University, 3400 Cluj-Napoca, Romania
 SERBAN BUZETEANU
 University of Bucharest, 7000 Bucharest, Romania
 (Submitted August 1983)
 1. INTRODUCTION

J. R. Bastida shows in his paper [1] that, if $u \in R, u>1$, and $\left(x_{n}\right)_{n \geqslant 0}$ is a sequence given by

$$
\begin{equation*}
x_{n+1}=u x_{n}+\sqrt{\left(u^{2}-1\right)\left(x_{n}^{2}-x_{0}^{2}\right)+\left(x_{1}-u x_{0}\right)^{2}}, \quad n \geqslant 0 \tag{1}
\end{equation*}
$$

then $x_{n+2}=2 u x_{n+1}-x_{n}, n \geqslant 0$. So, if the numbers u, x_{0}, and x_{1} are integers, it results that x_{n} is an integer for any $n \geqslant 0$.

Bastida and DeLeon [2] establish sufficient conditions for the numbers u, t, x_{0}, and x_{1} such that the linear recurrence

$$
\begin{equation*}
x_{n+2}=2 u x_{n+1}-t x_{n}^{-} \tag{2}
\end{equation*}
$$

can be reduced to a relation of form (1), between x_{n} and x_{n+1}. Consequently, the relation's two consecutive terms of Fibonacci, Lucas, and Pell sequences are given in [2].
S. Roy [6] finds this relation for the Fibonacci sequence using hyperbolic functions.

In this paper we shall prove that if a sequence $\left(x_{n}\right)_{n \geqslant 1}$ satisfies a linear recurrence of order $r \geqslant 2$, then there exists a polynomial relation between any r consecutive terms. This shows that the linear recurrence of order r was reduced to a nonlinear recurrence of order $r-1$.

From a practical point of view, for $r \geqslant 3$, expressing x_{n} in the function of $x_{n-1}, \ldots, x_{n-x+1}$ is difficult, because we must solve an algebraic equation of degree $\geqslant 3$ and choose the "good solution."

If $r=2$, we can do this in many important cases. An application of this case is a generalization of the result given in [3].

2. THE MAIN RESULT

Let $\left(x_{n}\right)_{n \geqslant 1}$ be a sequence given by the linear recurrence of order r,

$$
\begin{equation*}
x_{n}=\sum_{k=1}^{r} a_{k} x_{n-r+k-1}, \quad n \geqslant r+1, x_{i}=\alpha_{i}, \quad 1 \leqslant i \leqslant r, \tag{3}
\end{equation*}
$$

where $\alpha_{1}, \ldots, \alpha_{r}$ and $\alpha_{1}, \ldots, \alpha_{r}$ are given real numbers (they can also be complex numbers or elements of an arbitrary commutative field). Suppose $a_{1} \neq 0$.

ON THE REDUCTION OF A LINEAR RECURRENCE OF ORDER r

For $n \geqslant r$, we consider the determinant
and then prove the following theorem.
Theorem 1. Let $\left(x_{n}\right)_{n \geqslant 1}$ be a sequence given by (3) and let D_{n} be given by (4). Then, for any $n \geqslant r$, we have the r relation

$$
\begin{equation*}
D_{n}=(-1)^{(r-1)(n-r)} \alpha_{1}^{n-r} D_{r} \tag{5}
\end{equation*}
$$

Proof: Following the method of [4], [5], and [7] (for $r=2$), we introduce the matrix

$$
A_{n}=\left[\begin{array}{lllll}
x_{n-r+1} & x_{n-r+2} & \ldots & x_{n-1} & x_{n} \tag{6}\\
x_{n-r+2} & x_{n-r+3} & \ldots & x_{n} & x_{n+1} \\
\ldots \ldots \ldots & \ldots \ldots \ldots \ldots \ldots & \ldots \ldots \ldots \ldots \ldots \ldots \\
x_{n-1} & x_{n} & \ldots & x_{n+n-3} & x_{n+r-2} \\
x_{n} & x_{n+1} & \cdots & x_{n+r-2} & x_{n+n-1}
\end{array}\right] .
$$

It is easy to see that
so that

Passing to determinants in (8), we obtain

$$
\left((-1)^{r-1} a_{1}\right)^{n-r} D_{r}=D_{n} \text { for } n \geqslant r \text {; }
$$

that is, the relation (5) is true.
Theorem 2. Let $\left(x_{n}\right)_{n \geqslant 1}$ be the sequence given by the linear recurrence (3). There exists a polynomial function of degree $r, F_{r}: R^{r} \rightarrow R$, such that the relation

$$
\begin{equation*}
F_{r}\left(x_{n}, x_{n-1}, \ldots, x_{n-r+1}\right)=(-1)^{(r-1)(n-r)} \alpha_{1}^{n-r} F_{r}\left(\alpha_{r}, \alpha_{r-1}, \ldots, \alpha_{1}\right) \tag{9}
\end{equation*}
$$

is true for every $n \geqslant r$.
Proof: Observe that, from the recurrence (3), we can compute the value of D_{r} knowing $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$. Also, from the recurrence (3), we can express successively all elements of D_{n} as a function of the terms $x_{n}, x_{n-1}, \ldots, x_{n-n+1}$ of the sequence $\left(x_{n}\right)_{n \geqslant 1}$. Thus there exists a polynomial function of degree r, $F_{r}: R^{r} \rightarrow R$ such that the relation (9) is true.

If we suppose that the equation

$$
F_{r}\left(x_{n}, x_{n-1}, \ldots, x_{n-r+1}\right)=(-1)^{(r-1)(n-r)} \alpha_{1}^{n-r} F_{r}\left(\alpha_{r}, \ldots, \alpha_{1}\right)
$$

can be resolved with respect to x_{n}, we find that x_{n} depends only on the terms $x_{n-1}, x_{n-2}, \ldots, x_{n-r+1}$.

If this is possible, the expression of x_{n} is, in general, very complicated.
When $r=2$, we obtain

$$
\begin{equation*}
F_{2}(x, y)=x^{2}-\alpha_{2} x y-\alpha_{1} y^{2} \tag{10}
\end{equation*}
$$

and it results that, for the sequence $\left(x_{n}\right)_{n \geqslant 1}$ given by

$$
\begin{equation*}
x_{n}=\alpha_{1} x_{n-2}+\alpha_{2} x_{n-1}, \quad n \geqslant 3, \quad x_{1}=\alpha_{1}, \quad x_{2}=\alpha_{2} \text {, } \tag{11}
\end{equation*}
$$

the relation $F_{2}\left(x_{n}, x_{n-1}\right)=(-1)^{n} \alpha_{1}^{n-2} F_{2}\left(\alpha_{2}, \alpha_{1}\right)$ holds. The last relation is the first result of [2], where it was proved by mathematical induction. If we write this relation explicitly, we obtain

$$
\begin{equation*}
\left(2 x_{n}-\alpha_{2} x_{n-1}\right)^{2}=\left(a_{2}^{2}+4 a_{1}\right) x_{n-1}^{2}+4(-1)^{n-1} a_{1}^{n-2}\left(\alpha_{1} \alpha_{1}^{2}+\alpha_{2} \alpha_{1} \alpha_{2}-\alpha_{2}^{2}\right) \tag{12}
\end{equation*}
$$

From the relation (12), under some supplementary conditions concerning the sequence $\left(x_{n}\right)_{n \geqslant 1}$, we can express x_{n} in terms of x_{n-1} 。

Again, from (12), it follows that if the sequence satisfies (11), where $a_{1}, \alpha_{2}, \alpha_{1}, \alpha_{2} \in N$, then for any $n \geqslant 3$,

$$
\left(\alpha_{2}^{2}+4 \alpha_{1}\right) x_{n-1}^{2}+4(-1)^{n-1} \alpha_{1}^{n-2}\left(\alpha_{1} \alpha_{1}^{2}+\alpha_{2} \alpha_{1} \alpha_{2}-\alpha_{2}^{2}\right)
$$

is a square. This result is an extension of [3].
In the particular case $r=3$, after elementary calculation, we obtain

$$
\begin{aligned}
F_{3}(x, y, z)=-x^{3} & -\left(\alpha_{1}+a_{2} \alpha_{3}\right) y^{3}-a_{1}^{2} z^{3}+2 a_{3} x^{2} y+\alpha_{2} x^{2} z \\
& -\left(a_{2}^{2}+\alpha_{1} a_{3}\right) y^{2} z-\left(\alpha_{3}^{2}-\alpha_{2}\right) x y^{2} \\
& -a_{1} a_{3} x z^{2}-2 a_{1} \alpha_{2} y z^{2}+\left(3 \alpha_{1}-\alpha_{2} \alpha_{3}\right) x y z
\end{aligned}
$$

So from relation (9), we get that, for the linear recurrence

$$
\begin{equation*}
x_{n}=\alpha_{1} x_{n-3}+\alpha_{2} x_{n-2}+\alpha_{3} x_{n-1}, \quad n \geqslant 4, \quad x_{1}=\alpha_{1}, \quad x_{2}=\alpha_{2}, \quad x_{3}=\alpha_{3}, \tag{13}
\end{equation*}
$$ the relation $F_{3}\left(x_{n}, x_{n-1}, x_{n-2}\right)=\alpha_{1}^{n-3} F_{3}^{\prime}\left(\alpha_{3}, \alpha_{2}, \alpha_{1}\right)$ is true.

REFERENCES

1. J. R. Bastida. "Quadric Properties of a Linearly Recurrent Sequence." Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing. Winnipeg, Canada: Utilitas Mathematica, 1979.
2. J. R. Bastida \& M. J. DeLeon. "A Quadratic Property of Certain Linearly Recurrent Sequences." The Fibonacci Quarterly 19, no. 2 (1981):144-46.
3. E. Just. Problem E 2367. Amer. Math. Monthly 7 (1972):772.
4. D. E. Knuth. The Art of Computer Programming. Vol. I: Fundamental Algorithms. Boston: Addison-Wesley, 1975.
5. R. McLaugh1in. "Sequences-Some Properties by Matrix Methods." The Math. Gaz. 64, no. 430 (1980): 281-82.
6. S. Roy. "What's the Next Fibonacci Number?" The Math. Gaz. 64, no. 425 (1980): 189-90.
7. J. R. Silvester. "Fibonacci Properties by Matrix Methods." The Math. Gaz. 63, no. 425 (1979):188-91.
