G. L. COHEN and R. J. WILLIAMS The New South Wales Institute of Technology, Broadway, New South Wales, 2007, Australia (Submitted July 1983)

1. INTRODUCTION

Throughout this paper we shall suppose that N is an odd perfect number, so that N is an odd integer and $\sigma(N) = 2N$, where σ is the positive-divisor-sum function. There is no known example of an odd perfect number, and it has not been proved that none exists. However, a great number of necessary conditions which must be satisfied by N have been established. The first of these, due to Euler, is that

 $N = p^{\alpha} q_1^{2\beta_1} \cdots q_t^{2\beta_t}$

for distinct odd primes p, q_1 , ..., q_t , with $p \equiv \alpha \equiv 1 \pmod{4}$. (We shall always assume this form for the prime factor decomposition of N). Many writers have found conditions which must be satisfied by the exponents $2\beta_1$, ..., $2\beta_t$, and it is our intention here to extend some of those results. We shall find it necessary to call on a number of conditions of other types, some of which have only recently been found. These are outlined in Section 2.

It is known (see [8]) that we cannot have $\beta_i \equiv 1 \pmod{3}$ for all *i* or (see [9]) $\beta_i \equiv 17 \pmod{35}$ for all *i*. Also, if $\beta_1 = \cdots = \beta_t = \beta$, then: from [6], $\beta \neq 2$; from [4], $\beta \neq 3$; and from [9], $\beta \neq 5$, 12, 24, or 62. We shall prove

Theorem 1. If N as above is an odd perfect number and $\beta_1 = \cdots = \beta_t = \beta$, then $\beta \neq 6, 8, 11, 14$, or 18.

The possibility that $\beta_2 = \cdots = \beta_t = 1$ (with $\beta_1 > 1$) has also been considered. In this case, it is known (see [1]) that $\beta_1 \neq 2$ and (see [7]) that $\beta_1 \neq 3$; by a previously mentioned result [8], we also have that $\beta_1 \neq 1 \pmod{3}$. We shall prove

Theorem 2. If N as above is an odd perfect number and $\beta_2 = \cdots = \beta_t = 1$, then $\beta_1 \neq 5$ or 6.

The computations required to prove these two theorems were mostly carried out on the Honeywell 66/40 computer at The New South Wales Institute of Technology. We also made use of some factorizations in [10].

Finally, we shall introduce a theorem whose proof is quite elementary, but it is a result which, to our knowledge, has not been noted previously. Euler's form for N, shown above, follows quickly by considering the equation $\sigma(N) = 2N$, modulo 4. Using the modulus 8 instead, we will obtain

<u>Theorem 3.</u> If *N* as above is an odd perfect number and *x* is the number of prime powers $q_i^{2\beta_i}$ in which both $q_i \equiv 1 \pmod{4}$ and $\beta_i \equiv 1 \pmod{2}$, then $p - \alpha \equiv 4x \pmod{8}$.

[Feb.

To obtain the following corollary, we then only need to notice that x = 0.

<u>Corollary</u>. If N as above is an odd perfect number and $\beta_i \equiv 0 \pmod{2}$ for all i, then $p \equiv \alpha \pmod{8}$.

2. PRELIMINARY RESULTS

Since we are assuming that $\sigma(N) = 2N$, it is clear in the first place that any odd divisor of $\sigma(N)$ is also a divisor of N. The proof of Theorem 1 makes use of the following facts.

- (i) N is divisible by (p + 1)/2 (since α is odd).
- (ii) If q and 2β + 1 = r are primes, then r | σ(q^{2β}) if and only if q ≡ 1 (mod r). Furthermore, if r | σ(q^{2β}), then r || σ(q^{2β}). If s | σ(q^{2β}) and s ≠ r, then s ≡ 1 (mod r). (This is a special case of results given, for example, in [9].)
- (iii) If $\beta_1 = \cdots = \beta_t = \beta$ and $2\beta + 1 = r$ is prime, then $r^4 | \mathbb{N}$ and $p \equiv 1 \pmod{r}$. In particular, $p \neq r$. (See [6] for generalizations of this.)

(iv) If $n \mid N$, then $\sigma(n) \mid n \leq 2$.

The proof of Theorem 2 uses (i), (ii), and (iv), as well as the following results.

- (v) The second greatest prime factor of N is at least 1009 (see [3]) and the greatest at least 100129 (see [5]).
- (vi) The equation $q^2 + q + 1 = p^a$ has no solution in primes p and q if a is an integer greater than 1 (see [1]).

3. PROOF OF THEOREM 1

We shall assume that $\beta = 6, 8, 11, 14$, and 18, in turn, and in each case obtain a contradiction, usually along the following lines. In each case, $2\beta + 1 = r$ is prime so that, by (iii), $r^{2\beta} || N$. Then $\sigma(r^{2\beta}) |N$. If s is prime, $s \neq p$ and $s | \sigma(r^{2\beta})$, then $s \equiv 1 \pmod{r}$ and $s^{2\beta} || N$, so that $r || \sigma(s^{2\beta})$, by (ii). Applying the same process to other prime factors of $\sigma(s^{2\beta})$ and repeating it sufficiently often, we find that $r^{2\beta+1} || N$, which is our contradiction.

Except in the case $\beta = 8$, we were not able to carry out sufficiently many factorizations explicitly. (We generally restricted ourselves to seeking prime factors less than 5×10^6 .) However, we were able to test whether unfactored quotients were pseudoprime (base 3) or not. Each *P* below is a pseudoprime and each *M* is an unfactored quotient which is not a pseudoprime, and hence is not a prime. We checked that each *M* was not a perfect power so that the existence of two distinct prime factors of each *M* was assured. We checked also that no *M*'s or *P*'s within each case had any prime factors in common with each other or with known factors of *N*. In this way, we could distinguish sufficiently many distinct prime factors of *N* to imply that $r^{2\beta+1} | N$. There is a slightly special treatment required when $\beta = 6$.

We shall give the details of the proof here only in the cases $\beta = 6$ and $\beta = 11$. These illustrate well the methods involved. The other parts of the proof are available from the first named author.

(a) Suppose $\beta = 6$, so that $13^{12} || N$; $\sigma(13^{12}) = 53 \cdot 264031 \cdot 1803647$. The relevant factorizations are given in Table 1. We distinguish two main cases.

1985]

	ą	Some factors of $\sigma(q^{12})/13$
	53 264031 1803647 131 79	3297113, P_1 P_2 131, M_1 79, Q M_2
(A)	131	$Q^{\dagger} = M_{3}$
(B)	131 9 ₉	$Q = q_9$ q_{10}

Table 1

Suppose first that $p \neq 53$. We may assume that $q_{2i-1}q_{2i}|M_i$ (i = 1, 2) and $q_{j+4} | P_j \ (j = 1, 2)$. In Table 1, Q is also a pseudoprime (base 3) and we need to consider two distinct alternatives. In (A), we suppose that $Q = M_3$ is composite, so that $q_7q_8 | M_3$, say. (We checked that Q was not a perfect power.) In (B), we suppose that Q is prime, so we write $Q = q_9$. If this is so, then $q_9 \neq$ p, since $Q \equiv 3 \pmod{4}$. Thus, we have 14 primes:

53, 79, 131, 264031, 1803647, 3297113, q_i (1 $\leq i \leq$ 6)

with q_7 and q_8 , or with q_9 and q_{10} . Each of these primes is congruent to 1 (mod 13) and at most one of them might be p. Put

 $\Lambda = \{53, 79, 131, 264031, 1803647, 3297113, M_1, M_2, P_1, P_2, Q, (Q^{13} - 1)/(Q - 1)\}.$

We checked that no two elements of Λ had a common prime factor; therefore, the 14 primes above are distinct. Hence, $13^{13} | N$, the desired contradiction. Now suppose that p = 53. By (i), 3 | N and so $\sigma(3^{12}) = 797161 | N$. Certainly there is a prime q_{11} dividing $\sigma(797161^{12})/13$. We thus have 13 primes:

79, 131, 264031, 797161, 1803647, q_i (1 $\leq i \leq$ 4), q_6 , q_{11}

with q_7 and q_8 , or with q_9 and q_{10} . Each of these is congruent to 1 (mod 13), and we checked that no two elements of the set

 $(\Lambda - \{53, 3297113, P_1\}) \cup \{797161, \sigma(797161^{12})/13\}$

had a common prime factor. Hence, again, 13^{13} |N.

(b) Suppose $\beta = 11$, so that $23^{22} \| N$, and note that

 $\sigma(23^{22}) = 461 \cdot 1289 \cdot M_1.$

Now refer to Table 2, where an asterisk signifies that the prime is 1 (mod 4), when that is relevant.

There are three cases to consider. First, suppose that p = 1289. By (i), $3 \cdot 5 | \mathbb{N}$ so that $n_1 | \mathbb{N}$ where $n_1 = (3 \cdot 5 \cdot 23 \cdot 47)^{22}$; but $\sigma(n_1)/n_1 > 2$, contradicting (iv). Similarly, if p = 461, then we have $3 \cdot 7 \cdot 11 | N$ so that $n_2 | N$ where $n_2 = (3 \cdot 7 \cdot 11 \cdot 23)^{22}$; but $\sigma(n_2)/n_2 > 2$.

Now suppose that $p \neq 461$ and $p \neq 1289$. We may suppose that $q_{2i-1}q_{2i} | M_i$ $(1 \le i \le 7)$ and $q_{15}|P$. Thus, N is divisible by the following 24 primes, each 1 (mod 23):

47, 139, 461, 1289, 37123, 133723, 281153, 300749, 2258831, q_i (1 $\leq i \leq$ 15).

[Feb.

72

Tab	le	2
-----	----	---

9	Some factors of $\sigma(q^{22})/23$
461*	139, 133723, P
133723	47, 37123, 2258831, 461 • M ₂
2258831	300749,* M ₃
1289*	281153,* M ₄
47	M ₅
139	M ₆
37123	M ₇

We checked that the 24 primes given above were distinct. One of them might be p, so $23^{23}|N$, our usual contradiction.

This shows that $\beta \neq 11$. We remark that we also looked at the remaining possible values of β less than 15, namely, 9, 15, 20, 21, and 23, without further success.

4. PROOF OF THEOREM 2

We begin by proving more than is stated in Theorem 2 in the case in which $3 \nmid N$.

Lemma. If N as before is an odd perfect number, $3 \nmid N$ and $\beta_2 = \cdots = \beta_t = 1$, then $\beta_1 \neq 5$, 6, or 8.

<u>Proof</u>: We will show first that, if $\beta_1 = 5$, 6, or 8, then $7 \not\mid N$. Notice that $q_i \equiv 2 \pmod{3}$ ($2 \leq i \leq t$), since, otherwise, $3 \mid \sigma(q_i^2) \mid N$. In particular, $7^2 \not\mid N$, so that $q_1 = 7$ if $7 \mid N$. In that case, we obtain contradictions, as follows.

If $\beta_1 = 5$, then $7^{10} | N$. But $1123 | \sigma(7^{10}) | N$ and $p \neq 1123$, so $1123^2 | N$. But $1123 \equiv 1 \pmod{3}$. If $\beta_1 = 6$, then $7^{12} | N$. Then $r = \sigma(7^{12}) = 16148168401 | N$; if r = p, then 103 | N, by (i). However, $103 \equiv r \equiv 1 \pmod{3}$. If $\beta_1 = 8$, then $7^{16} | N$, $14009 | \sigma(7^{16}) | N$. Then $p \neq 14009$, else 3 | N by (i), so $14009^2 | N$. But $223 | \sigma(14009^2)$ and $223 \equiv 1 \pmod{3}$.

Now we can show that $13 \nmid \mathbb{N}$ for any of these values of β_1 . Since \mathbb{N} is not divisible by either 3 or 7, we must have $q_1 = 13$ if $13 \mid \mathbb{N}$. Then $\beta_1 \neq 5$, else $23 \mid \sigma(13^{10}) \mid \mathbb{N}$ and $7 \mid \sigma(23^2) \mid \mathbb{N}$. Also, $\beta_1 \neq 6$, else $264031 \mid \sigma(13^{12}) \mid \mathbb{N}$ and $264031 \equiv 1 \pmod{3}$. Similarly, $\beta_1 \neq 8$, else $103 \mid \sigma(13^{16}) \mid \mathbb{N}$.

Notice next that, by (ii), divisors of $\sigma(q_i^2)$ ($2 \le i \le t$) are congruent to 1 (mod 3), so that $\sigma(q_i^2) = p^{a_i}q_1^{b_i}$ for some a_i , b_i ($0 \le a_i \le \alpha$, $0 \le b_i \le 2\beta_1$) and for each i ($2 \le i \le t$). There can be at most $2\beta_1$ values of $i \ge 2$ such that $q_1 \mid \sigma(q_i^2)$; by (vi), there is at most one value of $i \ge 2$ such that $\sigma(q_i^2) = p^{\sigma}$ ($c \ge 1$). It follows that N has at most $2\beta_1 + 3$ distinct prime factors. Of these, at most two are congruent to 1 (mod 3), namely, p and q_1 . By (i), certainly $p \equiv 1$ (mod 3), so that in fact $p \equiv 1$ (mod 12).

In our case, when $\beta_1 = 5$, 6, or 8, we must have $p \ge 37$ (since $13 \nmid N$) and has at most 19 distinct prime factors. Using (v), we can now obtain the final contradiction which proves the lemma:

$$2 = \frac{\sigma(N)}{N} = \frac{p - p^{-\alpha}}{p - 1} \prod_{i=1}^{t} \frac{q_i - q_i^{-2B_i}}{q_i - 1} < \frac{p}{p - 1} \prod_{i=1}^{t} \frac{q_i}{q_i - 1}$$
(continued)

73

1985]

 $<\frac{5}{4}\frac{11}{10}\frac{17}{16}\frac{19}{18}\frac{23}{22}\frac{29}{28}\frac{37}{36}\frac{41}{40}\frac{47}{46}\frac{53}{52}\frac{59}{58}\frac{71}{70}\frac{83}{82}\frac{89}{88}\frac{101}{100}\frac{107}{106}\frac{113}{112}\frac{1009}{1008}\frac{100129}{100128}<2.$

We shall give the remaining details only in the case $\beta_1 = 6$; the proof for the case $\beta_1 = 5$ is available from the first named author. By the Lemma, we can assume that 3 | N.

We will assume first that $q_1 = 3$. Then $797161 = \sigma(3^{12}) | N$. We cannot have p = 797161 because then, by (i), $398581^2 | N$: $1621 | \sigma(398581^2)$, $7 \cdot 13 | \sigma(1621^2)$, $19 | \sigma(7^2)$, and $127 | \sigma(19^2)$, so that n | N, where $n = 3^{12}(7 \cdot 13 \cdot 19 \cdot 127)^2$; but $\sigma(n)/n > 2$ and (iv) is contradicted. Hence, $797161^2 | N$.

Notice that $\sigma(797161^2) = 3 \cdot 61 \cdot 151 \cdot 22996651$; also note that $7 | \sigma(151^2)$ and $19 | \sigma(7^2)$. Thus, $7^2 19^2 | N$. Making use of (i), we then see that $p \neq 1693$, since then $(p + 1)/2 = 7 \cdot 11^2$ and $7 | \sigma(11^2)$, so that $7^3 | N$, and $p \neq 433$, since then $(p + 1)/2 = 7 \cdot 31$, $331 | \sigma(31^2)$ and $7 | \sigma(331^2)$, so that again $7^3 | N$. We now observe that

 $43 | \sigma(22996651^2), \quad 631 | \sigma(43^2), \quad 433 | \sigma(631^2), \quad 1693 | \sigma(433^2), \quad 13 | \sigma(1693^2),$

so that $n \mid \mathbb{N}$, where $n = 3^{12} 13(7 \cdot 19 \cdot 43)^2$; but $\sigma(n) \mid n > 2$, contradicting (iv). Now, we assume that $3^2 \mid \mathbb{N}$, so that we can have at most two values of $i \ge 2$ with $q_i \equiv 1 \pmod{3}$. We have $13 = \sigma(3^2) \mid \mathbb{N}$.

First, we will suppose that p = 13, so that, by (i), 7 | N. We cannot have $q_1 = 7$, because $\sigma(7^{12}) = 16148168401 = r$ is prime, $433 | \sigma(r^2)$, $37 | \sigma(433^2)$, and $37 \equiv 433 \equiv r \equiv 1 \pmod{3}$. Hence, $7^2 | N$, so $19 | \sigma(7^2) | N$. Again, $q_1 \neq 19$, because $599 \cdot 29251 | \sigma(19^{12})$, $51343 | \sigma(599^2)$, and $29251 \equiv 51343 \equiv 1 \pmod{3}$. Thus, $19^2 | N$ and for no further values of *i* can be have $q_i \equiv 1 \pmod{3}$. Therefore, we have $127 | \sigma(19^2) | N$.

Clearly, $127^2 \not\parallel N$, so $q_1 = 127$. Setting $q_2 = 7$ and $q_3 = 19$, we must have, for $i \ge 4$, $\sigma(q_i^2) = 7^{a_i} 13^{b_i} 19^{a_i} 127^{d_i}$ where $a_i \le 1$, $b_i \le \alpha$, $c_i \le 1$, and $d_i \le 11$, since, by (ii), any other prime divisors of $\sigma(q_i^2)$ would be congruent to 1 (mod 3). Using (vi), as in the proof of the Lemma, it follows that there are at most 14 primes q_i with $i \ge 4$. We cannot have $11 \mid N$ [although $\sigma(11^2) = 7 \cdot 19$], since then $n \mid N$, where $n = 3^27^211^213 \cdot 19^2$; but $\sigma(n)/n \ge 2$, contradicting (iv). Possibly $107 \mid N$, since $\sigma(107^2) = 7 \cdot 13 \cdot 127$, but we find that no other prime less than 500 can be q_i for some $i \ge 4$. Then we have our contradiction: there are 13 primes q, 503 $\le q \le 653$, that are congruent to 2 (mod 3); thus,

$$2 = \frac{\sigma(N)}{N} < \frac{\sigma(3^2 7^2 19^2)}{3^2 7^2 19^2} \frac{13}{12} \frac{107}{106} \frac{127}{126} \prod_{\substack{q = 503 \\ q \equiv 2 \pmod{3}}}^{653} \frac{q}{q - 1} < 2.$$

This shows that $p \neq 13$.

We cannot have $q_1 = 13$, because $53 \cdot 264031 | \sigma(13^{12})$, $p \neq 53$ [else $3^3 | N$, by (i)], $\sigma(53^2) = 7 \cdot 409$ and $7 \equiv 409 \equiv 264031 \equiv 1 \pmod{3}$. Hence, $13^2 | N$, so we have $62 | \sigma(13^2) | N$.

Suppose that p = 61, so that, by (i), 31 | N. Then $q_1 \neq 31$, since $\sigma(31^{12}) = 42407 \cdot 2426789 \cdot 7908811$, $43 | \sigma(7908811^2)$, and $13 \equiv 43 \equiv 7908811 \equiv 1 \pmod{3}$. Thus, $31^2 | N$ and $331 | \sigma(31^2) | N$. Since $13 \equiv 31 \equiv 331 \equiv 1 \pmod{3}$, then $q_1 = 331$. But $53 | \sigma(331^{12})$, $7 | \sigma(53^2)$, and $7 \equiv 13 \equiv 31 \equiv 1 \pmod{3}$. This shows that $p \neq 61$. Also, $q_1 \neq 61$, since $187123 | \sigma(61^{12})$, $19 | \sigma(187123^2)$, and $13 \equiv 19 \equiv 187123 \equiv 1 \pmod{3}$. Hence, $61^2 | N$, so $97 | \sigma(61^2) | N$, and we can have no further values of $i \ge 2$ with $q_i \equiv 1 \pmod{3}$. In particular, $97^2 \not| N$.

If p = 97, then $7 | \mathbb{N}$ by (i), so $q_1 = 7$; but $\sigma(7^{12}) = r$ (above) $\equiv 1 \pmod{3}$. Thus, $q_1 = 97$. But $79 | \sigma(97^{12})$ and $79 \equiv 1 \pmod{3}$.

This completes the proof.

[Feb.

5. PROOF OF THEOREM 3

We note first that, modulo 8,

$$\sigma(q_i^{2\beta_i}) = 1 + q_i + q_i^2 + \dots + q_i^{2\beta_i} \equiv 1 + q_i + 1 + \dots + q_i + 1$$

= 1 + \beta_i(q_i + 1),

and, writing $\alpha = 4\alpha + 1$,

 $\sigma(p^{\alpha}) = 1 + p\sigma(p^{4\alpha}) \equiv 1 + p(1 + 2\alpha(p + 1)) \equiv (2\alpha + 1)(p + 1).$ Since $\sigma(N) = 2N$, we have

$$(2a + 1)(p + 1) \prod_{i=1}^{t} (1 + \beta_i(q_i + 1)) \equiv 2p \pmod{8},$$

or, since $p \equiv 1 \pmod{4}$,

$$(2\alpha + 1)\frac{p+1}{2}\prod_{i=1}^{t} (1 + \beta_i(q_i + 1)) \equiv 1 \pmod{4}.$$

If $q_i \equiv 1 \pmod{4}$ and $\beta_i \equiv 1 \pmod{2}$, then $1 + \beta_i(q_i + 1) \equiv 3 \pmod{4}$; otherwise, $1 + \beta_i(q_i + 1) \equiv 1 \pmod{4}$. Thus,

 $3^{x}(2a + 1)\frac{p+1}{2} \equiv 1 \pmod{4}$.

We see that $3^x \equiv 2x + 1 \pmod{4}$, so now

$$(2\alpha + 2x + 1)\frac{p+1}{2} \equiv 1 \pmod{4}$$
.

Considering separately the possibilities $p \equiv 1 \pmod{8}$ and $p \equiv 5 \pmod{8}$, we find that this is equivalent to

$$\alpha + x \equiv \frac{p-1}{4} \pmod{2},$$

or $p - \alpha = p - 4\alpha - 1 \equiv 4x \pmod{8}$, as required.

Note: Since this paper was prepared for publication, we have noticed that Ewell [2] has also given a form of Theorem 3. Both his statement of the theorem and his proof are more complicated than the above.

REFERENCES

- 1. A. Brauer. "On the Non-Existence of Odd Perfect Numbers of Form $p^{\alpha}q_1^2q_2^2...q_{t-1}^2q_t^4.$ " Bull. Amer. Math. Soc. 49 (1943):712-18.
- 2. J. A. Ewell. "On the Multiplicative Structure of Odd Perfect Numbers." J. Number Th. 12 (1980):339-42.
- P. Hagis, Jr. "On the Second Largest Prime Divisor of an Odd Perfect Number." In Analytic Number Theory, Lecture Notes in Mathematics, Vol. 899, pp. 254-63. Berlin & New York: Springer-Verlag, 1981.
- P. Hagis, Jr., & W. L. McDaniel. "A New Result Concerning the Structure of Odd Perfect Numbers." Proc. Amer. Math. Soc. 32 (1972):13-15.

1985]

- 5. P. Hagis, Jr., & W. L. McDaniel. "On the Largest Prime Divisor of an Odd Perfect Number, II." *Math. Comp.* 29 (1975):922-24.
- 6. H.-J. Kanold. "Untersuchungen über ungerade vollkommene Zahlen." J. Reine Angew. Math. 183 (1941):98-109.
- H.-J. Kanold. "Sätze über Kreisteilungspolynome und ihre Anwendungen auf einige zahlentheoretische Probleme, II." J. Reine Angew. Math. 188 (1950): 129-46.
- 8. W. L. McDaniel. "The Non-Existence of Odd Perfect Numbers of a Certain Form." Arch. Math. 21 (1970):52-53.
- 9. W. L. McDaniel & P. Hagis, Jr. "Some Results Concerning the Non-Existence of Odd Perfect Numbers of the Form $p^{\alpha}M^{2\beta}$." The Fibonacci Quarterly 13. no. 1 (1975):25-28.
- B. Tuckerman. "Odd-Perfect-Number Tree to 10³⁶, To Supplement 'A Search Procedure and Lower Bound for Odd Perfect Numbers,'" IBM Research Report RC-4695, 1974.

[Feb.