A. F. HORADAM

University of New England, Armidale, Australia

Bro. J. M. MAHON

Catholic College of Education, Sydney, Australia (Submitted June 1983)

1. INTRODUCTION

The object of this paper is to record some properties of *Pell polynomials* $P_n(x)$ and *Pell-Lucas polynomials* $Q_n(x)$ defined by the recurrence relations

$$P_{n+2}(x) = 2xP_{n+1}(x) + P_n(x) \qquad P_0(x) = 0, \ P_1(x) = 1$$
(1.1)

and

$$Q_{n+2}(x) = 2xQ_{n+1}(x) + Q_n(x) \qquad Q_0(x) = 2, \ Q_1(x) = 2x.$$
 (1.2)

(1.3)

7

Initially, the polynomials are defined for $n \ge 0$ but their existence for $n \le 0$ is readily extended, yielding

$$P_{-n}(x) = (-1)^{n+1} P_n(x)$$

and

 $Q_{-n}(x) = (-1)^n Q_n(x).$ (1.4)

Some of these polynomials are:

$$\begin{cases} P_2(x) = 2x, \quad P_3(x) = 4x^2 + 1, \quad P_4(x) = 8x^3 + 4x, \\ P_5(x) = 16x^4 + 12x^2 + 1, \quad P_6(x) = 32x^5 + 32x^3 + 6x, \dots; \end{cases}$$
(1.5)

$$\begin{cases} Q_2(x) = 4x^2 + 2, \quad Q_3(x) = 8x^3 + 6x, \quad Q_4(x) = 16x^4 + 16x^2 + 2, \\ Q_5(x) = 32x^5 + 40x^3 + 10x, \quad Q_6(x) = 64x^6 + 96x^4 + 36x^2 + 2, \dots \end{cases}$$
(1.6)

Important special numerical cases are: $P_n(1) = P_n$, the nth Pell number; $Q_n(1) = Q_n$, the nth Pell-Lucas number; $P_n(\frac{1}{2}) = F_n$, the nth Fibonacci number; and $Q_n(\frac{1}{2}) = L_n$, the nth Lucas number. Furthermore, $P_n(\frac{1}{2}x) = F_n(x)$, the nth Fibonacci polynomial, and $Q_n(\frac{1}{2}x) = L_n(x)$, the nth Lucas polynomial (see [2]). Following standard procedures, we easily obtain the Binet forms

$$P_n(x) = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$
(1.7)

and

$$Q_n(x) = \alpha^n + \beta^n, \qquad (1.8)$$

where

$$\begin{cases} \alpha = x + \sqrt{x^2 + 1} \\ \beta = x - \sqrt{x^2 + 1} \end{cases}$$
(1.9)

are the roots of

$$\lambda^2 - 2x\lambda - 1 = 0, \tag{1.10}$$

so that

$$\alpha + \beta = 2x, \ \alpha - \beta = 2\sqrt{x^2 + 1}, \ \alpha\beta = -1.$$
(1.11)

1985]

The generating functions for the infinite sets of polynomials $\{P_n(x)\}$ and $\{Q_n(x)\}$ are found in the usual way to be

$$\sum_{r=0}^{\infty} P_{r+1}(x) y^r = \frac{1}{1 - 2xy - y^2}$$
(1.12)

and

$$\sum_{r=0}^{\infty} Q_{r+1}(x) y^r = \frac{2x+2y}{1-2xy-y^2}.$$
(1.13)

Results involving these generating functions are not developed here.

2. ELEMENTARY PROPERTIES OF $P_{n}\left(x ight)$, $Q_{n}\left(x ight)$

Important elementary relationships involving $P_n(x)$ and $Q_n(x)$ follow without difficulty with the aid of (1.7)-(1.11). Some of these are:

$$P_{n+1}(x) + P_{n-1}(x) = Q_n(x) = 2xP_n(x) + 2P_{n-1}(x)$$

$$Q_{n+1}(x) + Q_{n-1}(x) = 4(x^2 + 1)P_n(x)$$

$$P_n(x)Q_n(x) = P_{2n}(x)$$

$$Q_{2n}(x) = \frac{1}{2}\{Q_n^2(x) + 4(x^2 + 1)P_n^2(x)\}$$

$$P_{n+1}(x)P_{n-1}(x) - P_n^2(x) = (-1)^n$$

$$Q_{n+1}(x)Q_{n-1}(x) - Q_n^2(x) = (-1)^{n-1}4(x^2 + 1)$$

$$Simson formulas$$

$$(2.1)$$

$$(2.2)$$

$$(2.3)$$

$$(2.4)$$

$$P_{n+1}(x)P_{n-1}(x) - P_n^2(x) = (-1)^n$$

$$Q_{n+1}(x) - P_{n-1}^2(x) = 2xP_{2n}(x)$$

$$by (1.1), (2.1), (2.3)$$

$$(2.1)$$

$$4(x^{2} + 1)P_{n}^{2}(x) - Q_{n}^{2}(x) = 4(-1)^{n-1}$$
(2.8)

Formula (2.3) is useful in establishing divisibility properties of the polynomials. Geometrical paradoxes can be constructed from (2.5) when numerical values of x are inserted.

Summations of an elementary nature are obtained in the usual manner. The simplest are:

$$\sum_{r=1}^{n} P_{2r}(x) = (P_{2n+1}(x) - 1)/2x$$
(2.9)

$$\sum_{r=1}^{n} P_{2r-1}(x) = P_{2n}(x)/2x$$
(2.10)

$$\sum_{r=1}^{n} P_r(x) = (P_{n+1}(x) + P_n(x) - 1)/2x \text{ by } (2.9), (2.10)$$
(2.11)

$$\sum_{r=1}^{n} Q_{2r}(x) = (Q_{2n+1}(x) - 2x)/2x$$
(2.12)

$$\sum_{r=1}^{n} Q_{2r-1}(x) = (Q_{2n}(x) - 2)/2x$$
(2.13)

$$\sum_{r=1}^{n} Q_r(x) = (Q_{n+1}(x) + Q_n(x) - 2 - 2x)/2x \text{ by (2.12), (2.13)}$$
(2.14)

Extensions and variations of these finite summations, e.g., $\sum_{r=1}^{n} r^{2} P_{r}(x)$ and $\sum_{r=1}^{n} (-1)^{r} Q_{r}(x)$, are omitted in this treatment of the polynomials.

[Feb.

8

Induction can be used, with a little effort, to establish the explicit expressions $\lceil n-1 \rceil$

$$P_n(x) = \sum_{m=0}^{\lfloor \frac{2}{m} \rfloor} {\binom{n-m-1}{m}} (2x)^{n-2m-1}$$
(2.15)

and

$$Q_n(x) = \sum_{m=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{n}{n-m} {\binom{n-m}{m}} (2x)^{n-2m}, \quad n \neq 0,$$
(2.16)

where, in (2.16) we used the combinatorial identity

$$\frac{n}{n-m}\binom{n-m}{m} + \frac{n-1}{n-m}\binom{n-m}{m-1} = \frac{n+1}{n-m+1}\binom{n-m+1}{m}.$$

We proceed to prove (2.15).

<u>Proof of (2.15)</u>: The formula is trivially true for n = 1 and n = 2. Assume it is true for n = k and n = k - 1 where $k \ge 3$. Then we have

$$P_{k+1}(x) = 2xP_{k}(x) + P_{k-1}(x) \quad \text{by (1.1)}$$
$$= \sum_{m=0}^{\left\lfloor \frac{k-1}{2} \right\rfloor} {\binom{k-m-1}{m}} (2x)^{k-2m} + \sum_{m=0}^{\left\lfloor \frac{k-2}{2} \right\rfloor} {\binom{k-m-2}{m}} (2x)^{k-2m-2}.$$

If k = 2t, this becomes

$$\sum_{m=0}^{t-1} {\binom{2t-m}{m} - 1} (2x)^{2t-2m} + \sum_{m=0}^{t-1} {\binom{2t-m}{m} - 2} (2x)^{2t-2m-2}$$

$$= {\binom{2t-1}{0}} (2x)^{2t} + {\binom{2t-2}{1}} (2x)^{2t-2} + {\binom{2t-3}{2}} (2x)^{2t-4} + \dots + {\binom{t}{t-1}} (2x)^{2}$$

$$+ {\binom{2t-2}{0}} (2x)^{2t-2} + {\binom{2t-3}{1}} (2x)^{2t-4} + \dots + {\binom{t}{t-2}} (2x)^{2} + {\binom{t-1}{t-1}}$$

$$= \sum_{m=0}^{t} {\binom{2t-m}{m}} (2x)^{2t-2m} = \sum_{m=0}^{\lfloor k/2 \rfloor} {\binom{k-m}{m}} (2x)^{k-2m}$$

by using Pascal's formula. Similarly, it holds if k is odd, and the proof is completed.

Basic relationships involving $P_n(x)$ and $Q_n(x)$ may be obtained from these combinatorial formulas, but the calculations required are tedious. Binet forms produce the same results more quickly.

In passing, we note the differential calculus result:

$$\frac{dQ_n(x)}{dx} = 2nP_n(x).$$
(2.17)

Later, in (6.20), we shall see that the first derivative of $P_n(x)$ is given in terms of a (complex) Gegenbauer polynomial.

Because $P_n(x)$ and $Q_n(x)$ are generalizations of F_n and L_n , the collection of miscellaneous results for F_n and L_n given in [7] may be generalized; e.g.,

$$Q_{4n}(x) - 2 = 4(x^2 + 1)P_{2n}^2(x), \qquad (2.18)$$

$$P_{n-1}(x)P_{n+1}(x) + Q_{n-1}(x)Q_{n+1}(x) = (4x^2 + 5)P_n^2(x) + (-1)^{n-1}(4x^2 - 1), \quad (2.19)$$

1985]

and

$$\sum_{k=0}^{2n+1} {\binom{2n+1}{k}} P_{2k+p}(x) = \left[4(x^2+1)\right]^n Q_{2n+p+1}(x).$$
(2.20)

3. MATRIX GENERATION OF FORMULAS

We demonstrate that the matrix

$$P = \begin{bmatrix} 2x & 1 \\ 1 & 0 \end{bmatrix}$$
(3.1)

generates Pell polynomials and Pell-Lucas polynomials, and use it to establish some elementary properties of these polynomials.

Induction, with (1.1), leads to

$$P^{n} = \begin{bmatrix} P_{n+1}(x) & P_{n}(x) \\ P_{n}(x) & P_{n-1}(x) \end{bmatrix}$$
(3.2)

whence

$$\begin{bmatrix} P_{n+1}(x) \\ P_n(x) \end{bmatrix} = P^n \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
(3.3)

and

$$P_{n}(x) = \begin{bmatrix} 1 & 0 \end{bmatrix} P^{n-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$
(3.4)

The characteristic equation of P is

$$\lambda^2 - 2x\lambda - 1 = 0 \tag{3.5}$$

with eigenvalues

$$\begin{cases} \alpha = x + \sqrt{x^2 + 1} \\ \beta = x - \sqrt{x^2 + 1} \end{cases}$$
(3.6)

By the division algorithm for polynomials, $\lambda^{n} = (\lambda^{2} - 2x\lambda - 1)f(\lambda) + m\lambda + k,$ (3.7)

where $f(\lambda)$ is of degree n-2 in λ and m, k are functions of x. Put $\lambda = \alpha$ in (3.7). Then

$$\alpha^n = m\alpha + k. \tag{3.8}$$

Similarly,

 $\beta^n = m\beta + k. \tag{3.9}$

Solving (3.8) and (3.9) yields

$$m = \frac{\alpha^n - \beta^n}{\alpha - \beta}, \quad k = \frac{\alpha^{n-1} - \beta^{n-1}}{\alpha - \beta}.$$
 (3.10)

From (3.8)

$$P^n = mP + kI. \tag{3.11}$$

Equate the top right elements in (3.11) to obtain $m = P_n(x)$ so that the Binet form (1.7) for $P_n(x)$ is again produced from (3.10). Use of (2.1) gives

 $\begin{bmatrix} Q_{n+1}(x) \\ Q_n(x) \end{bmatrix} = P^n \begin{bmatrix} 2x \\ 2 \end{bmatrix}$ (3.12)

and

$$Q_n(x) = \begin{bmatrix} 1 & 0 \end{bmatrix} P^{n-1} \begin{bmatrix} 2x \\ 2 \end{bmatrix}.$$
 (3.13)

To illustrate the matrix technique, we prove

$$P_{m+n}(x) = P_{m-1}(x)P_n(x) + P_m(x)P_{n+1}(x)$$
(3.14)

for

$$P_{m-1}(x)P_{n}(x) + P_{m}(x)P_{n+1}(x) = [P_{m}(x), P_{m-1}(x)] \begin{bmatrix} P_{n+1}(x) \\ P_{n}(x) \end{bmatrix}$$
$$= [P_{m}(x), P_{m-1}(x)]P^{n} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ by } (3.3)$$
$$= [1 \quad 0]P^{m+n-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ by } (3.3) \text{ and } P^{m}P^{n} = P^{m+n}$$

$$Q_{m+n}(x) = P_{m-1}(x)Q_n(x) + P_m(x)Q_{n+1}(x).$$
(3.15)

= $P_{m+n}(x)$ by (3.4).

From (3.14) and (3.15) with (3.2) and (3.12), we derive

$$\begin{bmatrix} P_{n+r}(x) \\ P_n(x) \end{bmatrix} = \begin{bmatrix} P_r(x) & P_{r-1}(x) \\ 0 & 1 \end{bmatrix} P^n \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
(3.16)

and

$$\begin{bmatrix} Q_{n+r}(x) \\ Q_n(x) \end{bmatrix} = \begin{bmatrix} P_r(x) & P_{r-1}(x) \\ 0 & 1 \end{bmatrix} P^n \begin{bmatrix} 2x \\ 2 \end{bmatrix}.$$
(3.17)

Equation (3.14), including an interchange of m and n, in conjunction with (2.1) gives

$$P_{m+n}(x) = \frac{1}{2} \{ P_m(x) Q_n(x) + P_n(x) Q_m(x) \}, \qquad (3.18)$$

while (3.15), including a replacement of m by m + 1 and n by n - 1, with (2.1) and (2.2) gives

1985]

$$Q_{m+n}(x) = \frac{1}{2} \{ Q_m(x) Q_n(x) + 4(x^2 + 1) P_m(x) P_n(x) \}.$$
(3.19)

(3.20)

Putting m = n in (3.18) and (3.19) yields (2.3) and (2.4). Further,

$$P_{n+1}^{2}(x) + P_{n}^{2}(x) = P_{2n+1}(x)$$

since $P_{n+1}^2(x)$

$$\begin{aligned} x) + P_n^2(x) &= \left[P_{n+1}(x), P_n(x)\right] \begin{bmatrix} P_{n+1}(x) \\ P_n(x) \end{bmatrix} \\ &= \left[1 \quad 0\right] P^{2n} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ by } (3.2) \text{ and } (3.3) \\ &= P_{2n+1}(x) \text{ by } 3.4. \end{aligned}$$

Result (3.20) also follows directly from (3.14) with m = n + 1. Similarly,

$$Q_{n+1}^{2}(x) + Q_{n}^{2}(x) = 4(x^{2} + 1)P_{2n+1}(x).$$
(3.21)

All the above results can, of course, be derived by using the Binet forms (1.7) and (1.8). Techniques employed in these sections give rise to the following formulas:

$$P_{n+r}(x) + P_{n-r}(x) = \begin{cases} P_n(x)Q_r(x) & \text{if } r \text{ is even} \\ Q_n(x)P_r(x) & \text{if } r \text{ is odd} \end{cases}$$
(3.22)

$$Q_{n+r}(x) + Q_{n-r}(x) = \begin{cases} Q_n(x)Q_r(x) & r \text{ even} \\ 4(x^2 + 1)P_n(x)P_r(x) & r \text{ odd} \end{cases}$$
(3.23)

$$P_{n+r}(x) - P_{n-r}(x) = \begin{cases} Q_n(x)P_r(x) & r \text{ even} \\ P_n(x)Q_r(x) & r \text{ odd} \end{cases}$$
(3.24)

$$Q_{n+r}(x) - Q_{n-r}(x) = \begin{cases} 4(x^2 + 1)P_n(x)P_r(x) & r \text{ even} \\ Q_n(x)Q_r(x) & r \text{ odd} \end{cases}$$
(3.25)

$$P_{n+r}^{2}(x) - P_{n-r}^{2}(x) = P_{2n}(x)P_{2r}(x) \text{ by } (3.22), (3.24) \text{ and } (2.3)$$

$$Q_{n+r}^{2}(x) - Q_{n-r}^{2}(x) = 4(x^{2} + 1)P_{2n}(x)P_{2r}(x) \text{ by } (3.23), (3.25),$$
(3.26)

$$P_{mn+r}(x) = \begin{cases} P_n(x)Q_{(m-1)n+r}(x) + (-1)^n P_{(m-2)n+r}(x) \\ P_{(m-1)n+r}(x)Q_n(x) + (-1)^{n-1}P_{(m-2)n+r}(x) \end{cases}$$
(3.28)

- . n

$$Q_{mn+r}(x) = Q_{(m-1)n+r}(x)Q_n(x) + (-1)^{n-1}Q_{(m-2)n+r}$$
(3.29)

$$P_{n}^{2}(x) - P_{n+r}(x)P_{n-r}(x) = (-1)^{n-r}P_{r}^{2}(x)$$

$$Q_{n}^{2}(x) - Q_{n+r}(x)Q_{n-r}(x) = (-1)^{n-r+1}4(x^{2}+1)P_{r}^{2}(x)$$
Simson formulas
$$P_{n+h}(x)P_{n+k}(x) - P_{n}(x)P_{n+h+k}(x) = (-1)^{n}P_{h}(x)P_{k}(x)$$

$$(3.30)$$

$$(3.31)$$

$$(3.32)$$

$$(3.32)$$

$$(3.32)$$

$$Q_{n+h}(x)Q_{n+k}(x) - Q_n(x)Q_{n+h+k}(x) = (-1)^{n-1}4(x^2 + 1)P_h(x)P_k(x)$$
(3.33)

$$P_{n+h}(x)Q_{n+k}(x) - P_n(x)Q_{n+h+k}(x) = (-1)^n P_h(x)Q_k(x)$$
(3.34)

Finally, we offer two relationships that can be described as being of the *de Moivre type*:

$$\{Q_n(x) + 2\sqrt{x^2 + 1}P_n(x)\}^r = 2^{r-1}\{Q_{nr}(x) + 2\sqrt{x^2 + 1}P_{nr}(x)\}$$
and
(3.35)

$$\{Q_n(x) - 2\sqrt{x^2 + 1}P_n(x)\}^r = 2^{r-1}\{Q_{nr}(x) - 2\sqrt{x^2 + 1}P_{nr}(x)\}.$$
(3.36)

When $x = \frac{1}{2}$, (3.35) and (3.36) reduce to

$$\left\{\frac{L_n + \sqrt{5F_n}}{2}\right\}^r = \frac{L_{nr} + \sqrt{5F_{nr}}}{2}$$
(3.37)

and

$$\left\{\frac{L_n - \sqrt{5}F_n}{2}\right\}^r = \frac{L_{nr} - \sqrt{5}F_{nr}}{2},\tag{3.38}$$

respectively, the first of which is given in [7, p. 60].

Results involving $P_n(x)$ and $Q_n(x)$ are as multitudinous as the sands of the seashore, and one can gather these grains *ad infinitum*, *ad nauseam*.

4. PASCAL ARRAYS GENERATING $P_n(x)$, $Q_n(x)$

Consider the following table.

Table 1: Pell Polynomials from Rising Diagonals

Denote the coefficient of the power of x in the m^{th} row and n^{th} column by (m, n).

It is now shown that the rising diagonals presented in Table 1 produce the Pell polynomial (1.5).

Define the entries in row *m* as the terms in the expansion $(2x+1)^{m-1}$, that is

$$\sum_{n=1}^{m} (m, n) x^{m-n} = (2x+1)^{m-1} \qquad m \ge n.$$
(4.2)

1985]

Hence,

$$(m, n) = {\binom{m-1}{m-n}} 2^{m-n} \qquad m \ge n.$$
 (4.3)

Now the rising diagonal function $R_m(x)$ of degree m in x in Table 1 is:

$$R_{m}(x) = \sum_{n=1}^{\left\lfloor \frac{m+1}{2} \right\rfloor} (m+1-n, n) x^{m+1-2n} \quad (m \ge 1)$$

$$= \sum_{n=1}^{\left\lfloor \frac{m+1}{2} \right\rfloor} {\binom{m-n}{m+1-2n}} (2x)^{m+1-2n} \quad \text{by (4.3)}$$

$$= \sum_{n=1}^{\left\lfloor \frac{m+1}{2} \right\rfloor} {\binom{m-n}{n-1}} (2x)^{m+1-2n}$$

$$= \sum_{n=0}^{\left\lfloor \frac{m-1}{2} \right\rfloor} {\binom{m-n-1}{n-1}} (2x)^{m-1-2n}$$

 $= P_m(x)$

from (2.15)

Now consider Table 2.

Table 2: Pell-Lucas Polynomials from Rising Diagonals

m	1	2	3	4	5	6	7	
1	-250	2						
2	4.02	632	2					
3	-823	16x2	102	2				
4	-16x4	4023	36x ²	1400	2			(4.5)
5	-3225	96x ⁴	11223	$64x^2$	18x	2		
6	-64x ⁶	$224x^{5}$	$320x^{4}$	$240x^{3}$	$100x^{2}$	22x	2	
•								

Let [m, n] denote the coefficient of the power of x in the m^{th} row and n^{th} column.

We may define the entries in row m as the terms in the expansion of

 $(2x + 1)^m + (2x + 1)^{m-1} = (2x + 1)^{m-1}(2x + 2),$

that is,

$$\sum_{n=1}^{m+1} [m, n] x^{m+1-n} = (2x+1)^{m-1} (2x+2)$$
(4.6)

[Feb.

and so

$$[m, n] = 2(m, n) + 2(m, n - 1) = 2(m, n) + (m, n - 1) + (m, n - 1)$$
$$= (m + 1, n) + (m, n - 1).$$
(4.7)

Denote the rising diagonal function of degree m in x in Table 2 by $S_m(x)$. Then

$$S_{m}(x) = \sum_{n=1}^{\left[\frac{m+2}{2}\right]} [m+1-n, n]x^{m+2-2n}$$

$$= \sum_{n=1}^{\left[\frac{m+2}{2}\right]} \{(m+2-n, n) + (m+1-n, n-1)\}x^{m+2-2n} \text{ by (4.7)}$$

$$= \sum_{n=1}^{\left[\frac{m+2}{2}\right]} \{(m+1-n) + (m-n) + (m-n) \} (2x)^{m+2-2n} \text{ by (4.3)}$$

$$= \sum_{n=0}^{\left[\frac{m}{2}\right]} \frac{m}{m-n} \binom{m-n}{n} (2x)^{m-2n} \text{ on simplification}$$

 $= Q_m(x)$ by (2.16)

Thus, we have demonstrated that Pell and Pell-Lucas polynomials are generated by the rising diagonals in Table 1 and Table 2, respectively.

Next, arrange the coefficients of the powers of x in $P_n(x)$, (1.5), in the following Pascal-like display.

Coeffs. Powers in $P_n(x)$	0	1	2	3	4	5	6	7	8	9
1	1									
2	0	2								
3	1	0	4							
4	0	4	0	8						
5	1	0	12	0	16					
6	0	6	0	32	0	32				
7	1	0	24	0	80	0	64			
8	0	8	0	80	0	192	0	128		
9	1	0	40	0	240	0	448	0	256	
10	0	10	0	160	0	672	0	1024	0	512
•										

Table 3: Pell Polynomial Coefficients

Designate the entry in the r^{th} row and c^{th} column of Table 3 by $\{r, c\}$. From the table and (2.15), we have:

 $\{2r, 2c\} = 0$

1985]

15

(4.8)

$$\{2r, 2c-1\} = \begin{cases} \binom{r+c-1}{r-c} 2^{2c-1} & c=1, 2, \dots, r\\ 0 & c>r \end{cases}$$
(4.9)

 $\{2r-1, 2c-1\} = 0$

(4.10)

$$\{2r-1, 2c\} = \begin{cases} \binom{r+c-1}{r-c-1} 2^{2c} & c = 0, 1, 2, \dots, r-1 \\ 0 & c \ge r \end{cases}$$
(4.11)

Using (4.8)-(4-11), we can prove:

$$\sum_{i=0}^{r-1} \{2r - 1 - i, i\} = 3^{r-1}$$
(4.12)

$$\sum_{i=1}^{2r} \{i, 2c-1\} = \frac{1}{2} \{2r+1, 2c\}$$
(4.13)

$$\sum_{i=1}^{2r} \{i, 2c\} = \frac{1}{2} \{2r, 2c+1\}$$
(4.14)

$$\sum_{i=1}^{2r-1} \{i, 2c-1\} = \frac{1}{2} \{2r-1, 2c\}$$

$$(4.15)$$

$$\frac{2r-1}{2}$$

$$\sum_{i=1}^{2r-1} \{i, 2c\} = \frac{1}{2} \{2r, 2c+1\}$$
(4.16)

Proof of (4.12)

$$\sum_{i=0}^{r-1} \{2r-1-i, i\} = \{2r-1, 0\} + \{2r-2, 1\} + \dots + \{r, r-1\}$$
$$= \binom{r-1}{r-1} 2^0 + \binom{r-1}{r-2} 2^1 + \dots + \binom{r-1}{0} 2^{r-1} \quad \text{by (4.9)}$$
$$= (1+2)^{r-1} = 3^{r-1}$$

 $\frac{\operatorname{Proof of } (4.13)}{\sum_{i=1}^{2r} \{i, 2c-1\}} = \{2, 2c-1\} + \{4, 2c-1\} + \dots + \{2r, 2c-1\} \text{ by } (4.10) \\ = \{2c, 2c-1\} + \{2c+2, 2c-1\} + \dots + \{2r, 2c-1\} \text{ by } (4.9) \\ = 2^{2c-1} \left(\binom{2c-1}{0} + \binom{2c}{1} + \dots + \binom{r+c-1}{r-c} \right) \right) \text{ by } (4.9) \\ = 2^{2c-1} \left(\binom{2c-1}{2c-1} + \binom{2c}{2c-1} + \dots + \binom{r+c-1}{2c-1} \right) \\ = 2^{2c-1} \left(\binom{r+c}{2c} \right) \text{ by identity } (1.52) \text{ in } [6] \\ = \frac{1}{2} \{2r+1, 2c\} \text{ by } (4.11)$

If a similar table for $Q_n(x)$ is constructed, and if we designate the element in row r and column c by $\overline{r, c}$, we have from (2.1) that

[Feb.

$$\overline{r, c} = \{r+1, c\} + \{r-1, c\} = 2\{r, c-1\} + 2\{r-1, c\}.$$
(4.17)

Properties of $\overline{r, c}$ may then be developed on the basis of (4.8)-(4.11).

From (2.2), we derive

$$\frac{r+1}{r}, c+\frac{r-1}{r-1}, c=4\{r, c\}+4\{r, c-2\}.$$
(4.18)

To conclude this section, we establish a relationship between (m, n) and $\{r, c\}$ in Tables 1 and 3, respectively (both relating to the Pell polynomials). A relationship between [m, n] and $\overline{r, c}$ will also be formulated for the Pell-Lucas polynomials.

Now in (4.9), 2c - 1 is the power of x in $P_{2r}(x)$. Comparing the coefficient of the term x^{2c-1} in (2.15) with that in (4.3), where we recall that

$$\binom{m-1}{m-n} = \binom{m-1}{n-1}$$

we deduce that

$$\{2r, 2c - 1\} = (r + c, r - c + 1)$$
(4.19)

and so

 $(r, c) = \{r + c - 1, r - c\}.$ (4.20)

A similar argument applied to (2.15) and (4.3) for (4.1) yields

 $\{2r-1, 2c\} = (r+c, r-c)$

whence (4.20) results again.

Lastly, consider $\overline{2r}$, 2c, the coefficient of x^{2c} in $Q_{2r}(x)$. From (4.17),

$$\overline{2r, 2c} = \left(\begin{pmatrix} r+c \\ r-c \end{pmatrix} + \begin{pmatrix} r+c-1 \\ r-c-1 \end{pmatrix} \right) 2^{2c}.$$

Using (4.7) with (4.3), we find

$$[m, n] = \left(\binom{m}{n-1} + \binom{m-1}{n-2} \right) 2^{m-n+1}$$

whence, by comparison of the two forms,

 $\overline{2r, 2c} = [r + c, r - c + 1]. \tag{4.21}$

Reversely,

 $[r, c] = \overline{r + c - 1, r - c + 1}.$ A similar formula to (4.21) is $\overline{2r - 1, 2c + 1} = [r + c, r - c]$ whence (4.22) results again.

5. DETERMINANTAL GENERATION OF $P_n(x)$, $Q_n(x)$

Write d_{ij} for the element in the i^{th} row and j^{th} column of an $n \times n$ determinant.

Let $\Delta_n(x)$ be the $n \times n$ determinant defined by

$$\Delta_{n}(x): \begin{cases} d_{ii} = 2x & i = 1, 2, \dots, n \\ d_{i, i+1} = 1 & i = 1, \dots, n-1 \\ d_{i, i-1} = -1 & i = 2, \dots, n \\ d_{ij} = 0 & \text{otherwise} \end{cases}$$
(5.1)

1985]

17

(4.22)

From $\Delta_n(x)$, the determinants $\delta_n(x)$, $\Delta_n^*(x)$, and $\delta_n^*(x)$ are defined as follows: $\delta_n(x)$: as for $\Delta_n(x)$ except that $d_{i,i+1} = -1$, $d_{i,i-1} = 1$ (5.2) $\Delta_n^*(x)$: as for $\Delta_n(x)$ except that $d_{12} = 2$, $d_{i,i+1} = 1$ (5.3) $(i = 2, \ldots, n - 1)$

$$\delta_n^*(x): \text{ as for } \Delta_n(x) \text{ except that } d_{12} = -2, \ d_{i, i+1} = -1$$
(5.4)
(i = 2, ..., n - 1)
$$d_{i, i-1} = 1.$$

Induction and expansion along the first row, together with basic properties of $P_n(x)$ and $Q_n(x)$, e.g., (1.1), (2.1), yield

$\Delta_n(x)$	$= P_{n+1}(x)$	(5.5)
$\delta_n(x)$	$= P_{n+1}(x)$	(5.6)
$\Delta_n^*(x)$	$= Q_n(x)$	(5.7)
$\delta_n^*(x)$	$= Q_n(x).$	(5.8)

In the process of expansion, we derive recurrence relations such as

 $\Delta_k(x) = 2x\Delta_{k-1}(x) + \Delta_{k-2}(x) \qquad k \ge 3$ (5.9)

and

 $\Delta_{\nu}^{\star}(x)$

$$) = 2x \Delta_{k-1}^{*}(x) + 2\Delta_{k-2}^{*}(x) \qquad k \ge 3.$$
(5.10)

6. RELATIONS OF $P_n(x)$, $Q_n(x)$ TO OTHER FUNCTIONS

Perhaps the simplest results relating $P_n(x)$ to other functions are found in [4]:

$$P_{2n}(x) = \sinh 2nt/\cosh t \qquad (6.1)$$

$$P_{2n+1}(x) = \cosh(2n+1)t/\cosh t$$
 (6.2)

Hence

$$Q_{2n}(x) = 2 \cosh 2nt$$
(6.3)
$$x = \sinh t$$

$$Q_{2n+1}(x) = 2 \sinh(2n+1)t$$
 (6.4)

Comparison of the explicit summation formulas for $P_n(x)$ and $Q_n(x)$ given in (2.15) and (2.16) with the explicit summation formulas for $U_n(x)$ and $T_n(x)$, the Chebyshev polynomials of the second and first kinds, respectively (see [11]), shows that

$$P_n(x) = (-i)^{n-1} U_{n-1}(ix)$$
(6.5)

and

i.e., $P_n(x)$ and $Q_n(x)$ are modified Chebyshev polynomials in a complex variable. To reconcile the form in [11] with (2.16) we had to replace the Gamma function, namely, $\Gamma(n - m) = (n - m - 1)!$

Because of (6.5) and (6.6), $P_n(x)$ and $Q_n(x)$ would have [9] complex hypergeometric representations. Other representations also exist in view of the many forms the expressions for $U_n(x)$ and $T_n(x)$ can take.

In particular, we may record that

 $Q_n(x) = 2(-i)^n T_n(ix)$

	$P_{n}(i \cosh x)$	= i^{n-1} sinh $nx/sinh$	n x		(6.7)
and					

$$Q_n(i \cosh x) = 2i^n \cosh nx. \tag{6.8}$$

[Feb.

From (1.1) we observe that

$$P_{n+1}(ix) + P_{n-1}(ix) = Q_n(ix)$$

leads, with the help of (6.5) and (6.6), to

$$U_n(ix) - U_{n-2}(ix) = 2T_n(ix), \tag{6.9}$$

which is a complex version of a basic relationship between the two kinds of Chebyshev polynomials. Similarly, other Chebyshev relationships may be tied to corresponding relationships involving $P_n(x)$ and $Q_n(x)$.

Finally, we allude to the *Gegenbauer* (ultraspherical) polynomial of degree n and order \vee , $C_n^{\vee}(x)$, defined by

$$\sum_{n=0}^{\infty} C_n^{\nu}(x) t^n = (1 - 2xt + t^2)^{-\nu} \qquad (\nu > 0, |t| < 1).$$
(6.10)

with explicit forms

$$C_n^0(x) = \sum_{r=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{(-1)^r}{n-r} {\binom{n-r}{r}} (2x)^{n-2r} \qquad C_0^0(x) = 1 \quad (\nu = 0)$$
(6.11)

and

$$C_{n}^{\nu}(x) = \frac{1}{\Gamma(\nu)} \sum_{r=0}^{\left[\frac{n}{2}\right]} (-1)^{r} \frac{\Gamma(n-r+\nu)}{\Gamma(n-r+1)} {\binom{n-r}{r}} (2x)^{n-2r} \quad (\nu > -\frac{1}{2}; \nu \neq 0). \quad (6.12)$$

A recurrence relation for $C_n^{\nu}(x)$ is

$$(n+2)C_{n+2}^{\nu}(x) = 2(n+\nu+1)xC_{n+1}^{\nu}(x) - (n+2\nu)C_n^{\nu}(x)$$
(6.13)

which, for v = 1, reduces to

$$C_{n+2}^{1}(x) = 2xC_{n+1}^{1}(x) - C_{n}^{1}(x)$$
(6.14)

with

$$C_0^1(x) = 1, \quad C_1^1(x) = 2x.$$
 (6.15)

Clearly,
$$C_n^1(x) = U_n(x)$$
, and by (6.5),
 $P_n(x) = (-i)^{n-1} C_{n-1}^1(ix)$. (6.16)

When v = 0, (6.11), where $C_1^0(x) = 2x$, gives

$$C_n^0(x) = \frac{2}{n} T_n(x),$$

so that (6.6) gives

$$Q_n(x) = n(-i) C_n^0(ix) \qquad (n \ge 1)$$
 (6.17)

i.e., $P_n(x)$, $Q_n(n)$ are modified Gegenbauer polynomials in a complex variable. As the Fibonacci and Lucas numbers arise from $P_n(x)$ and $Q_n(x)$ when $x = \frac{1}{2}$, we have, from (6.16) and (6.17),

$$F_1 = C_0^1\left(\frac{i}{2}\right) = 1, \quad F_n = (-i)^{n-1}C_{n-1}^1\left(\frac{i}{2}\right)$$
 (6.18)

and

$$L_0 = 2C_0^0\left(\frac{i}{2}\right) = 2, \quad L_n = n(-1)^n C_n^0\left(\frac{i}{2}\right) \qquad n \ge 1.$$
 (6.19)

Using the known [9] result $dT_n(x)/dx = nU_{n-1}(x)$ from [11] with (6.5) and (6.6), we can arrive back at (2.17), viz., $dQ_n(x)/dx = 2nP_n(x)$.

1985]

Differentiating in (2.15) and applying (6.12) in the case ν = 2, we deduce that

$$\frac{dP_n(x)}{dx} = 2(-i)^{n-2}C_{n-2}^2(ix).$$

Alternatively, we may differentiate in (6.16) and invoke the result [11]

$$\frac{dC_n^{\nu}(x)}{dx} = 2\nu C_{n-1}^{\nu+1}(x)$$

to obtain (6.20).

Some of the above results, e.g., (6.16), were generalized in [12] for the sequence of polynomials $\{A_k(x)\}$ defined by

$$A_{n+2}(x) = 2xA_{n+1}(x) + A_n(x) \qquad A_0(x) = s, \quad A_1(x) = r.$$
(6.21)

Of course, $\{A_n(x)\}$ is a special case of the sequence $\{W_n(p, q; a, b)\}$, some of whose properties are documented in [8].

Information related to some aspects of the above ideas can be found in [1], [2], [3], [4], [5], [9], and [10].

REFERENCES

- 1. R. Barakat. "The Matrix Operator e^x and the Lucas Polynomials." J. Math. and Physics 43 (1964):332-35.
- 2. M. Bicknell. "A Primer for the Fibonacci Numbers. Part VII: Introduction to Fibonacci Polynomials and Their Divisibility Properties." *The Fibonacci Quarterly* 8, no. 4 (1970):407-20.
- 3. R.G. Buschman. "Fibonacci Numbers, Chebyshev Polynomials, Generalizations and Difference Equations." *The Fibonacci Quarterly* 1, no. 4 (1963):1-7, 19.
- 4. P. F. Byrd. "Expansion of Analytic Functions in Polynomials Associated with Fibonacci Numbers." *The Fibonacci Quarterly* 1, no. 1 (1963):16-24.
- 5. P. F. Byrd. "Expansion of Analytic Functions in Terms involving Lucas Numbers or Similar Number Sequences." *The Fibonacci Quarterly* **3**, no. 2 (1965): 101-14.
- 6. H. W. Gould. Combinatorial Identities. Morgantown, 1972.
- 7. V. E. Hoggatt, Jr. *Fibonacci and Lucas Numbers*. Boston: Houghton Mifflin, 1969, rpt. Santa Clara, Calif.: The Fibonacci Association, 1980.
- 8. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." *The Fibonacci Quarterly* **3**, no. 3 (1965):161-75.
- 9. A. F. Horadam & S. Pethe. "Polynomials Associated with Gegenbauer Polynomials." *The Fibonacci Quarterly* 19, no. 5 (1981):393-98.
- 10. E. Lucas. Théorie des Nombres. Paris: Blanchard, 1961.
- W. Magnus, F. Oberhettinger, & R. P. Soni. Formulas and Theorems for the Special Functions of Mathematical Physics. Berlin: Springer-Verlag, 1966.
 J. E. Walton. M.Sc. Thesis, University of New England, 1968.

20

(6.20)