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1. INTRODUCTION 

The object of this paper is to record some properties of Pell polynomials 
Pn(x) and Veil-Lucas 'polynomials Qn(x) defined by the recurrence relations 

Pn+Z(x) = 2xPn + 1(x) + Pn(x) P0(x) = 0, P^x) = 1 (1.1) 

and 

Qn + 2(x) = 2xQn + l(x) + Qn(x) QQ(x) = 2, Q^x) = 2x. (1.2) 

Initially9 the polynomials are defined for n ^ 0 but their existence for 
n < 0 is readily extended, yielding 

P_n(x) = (-l)"+1Pn(aO (1.3) 

and 

Q_n(x) = (-l)nQn(x). (1.4) 

Some of these polynomials are: 

(P2(X) = 2x, P3(x) = kx2 + 1, Ph(x) = 8x3 + 4x, 

\p,(x) = 16^ + 12^2 + 1, P,(x) = 32x5 + 32^3 + 6x, . ..; 
(1.5) 

(Q0(x) = kx7- + 2 , Q(x) = Sx3 + 6x, Q(x) = 16a?1* + Ibx2 + 2, 
/ 2 3 4 (1.6) 
)S5(a;) = 32xs + 40x3 + lOx, Q6(x) = 64x6 + 9 6 ^ + 36x2 + 2, ... . 
Important special numerical cases are: Pn(l) = Pn 5 the nth PeZZ number; 

Qn(l) = $n5
 t h e ^th Pell-Lucas number; Pn(k) = Pn, the nth Fibonacci number; 

and Qn(h) = L„, the nth Lucas number. Furthermore, Pn(kx) = Fn(x) s the nth 

Fibonacci polynomial, and $n(^#) = Ln (x) 9 the nth Lucas polynomial (see [2]). 
Following standard procedures, we easily obtain the Binet forms 

and 

Qn(x) = an + 3n, (1.8) 

where 

a = x + vx + Vx2 + 1 

x - v^2 + 1 
(1.9) 

are the roots of 

X2 - 2x\ - 1 = 0 , (1.10) 

so that 

a + 3 = 2x, a - 3 = 2Vx2 + 1, a3 =' -1. (1.11) 
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The generating functions for the infinite sets of polynomials {Pn(x)} and 
iQn(%)} are found in the usual way to be 

±r„iMV = a _ 24 . y2 a-") 
and 

00 2x + 2zy 
J S ^ i f a ^ ' - l - 2xy-yz- ( U 1 3 ) 

Results involving these generating functions are not developed here. 

2. ELEMENTARY PROPERTIES OF Pn (x), Qn(x) 

Important elementary relationships involving Pn(x) and Qn(x) follow without 
difficulty with the aid of (1.7)—(1.11). Some of these are: 

Pn + 1(x) + Pn.1(a?) = Qn{x) = 2xPn(x) + 2Pn_1(x) (2.1) 

Cn + lC^) + ««-!<*) = 4 ^ + 1)P„W (2.2) 
Pn(x)Qn(x) = P2n(^) (2.3) 

Q2n(*) = hiQ2
n(x) + 4(x2 + l)pt(x)} (2.4) 

n + 1 n L > Svmson formulas 
Qn + 1(x)Qn_1(x) - Q2

n(x) = (-l)""^^2 + l)j (2.6) 

Pn + l ^ ~ P n - 1 ^ } = 2 x P 2 n ( X ) b y ( U 1 ) » ( 2 , 1 ) ' ( 2 ' 3 ) ( 2 ' ? ) 

40r2 + l)P20c) - Q2
n(x) = 4(-l)n"1 (2.8) 

Formula (2.3) is useful in establishing divisibility properties of the 
polynomials. Geometrical paradoxes can be constructed from (2.5) when numeri-
cal values of x are inserted. 

Summations of an elementary nature are obtained in the usual manner. The 
simplest are: 

n 
£P2 r(x) = (P2B + 1(a:) - l)/2x (2.9) 
r- 1 

YtPZT.1{x) - P2n(x)/2x (2.10) 
r= 1 

2>r(x) = (P„+1(a0 + P„(a» - l)/2ar by (2.9), (2.10) (2.11) 
r= 1 

E « 2 r W " («2„+i<«) " 2a0/2x (2.12) 
2»» 1 

r= 1 

£«,<*) = («n + 1(*) + «„<*> ~ 2 - 2x)/2x by (2.12), (2.13) (2.14) 
r= 1 

Extensions and variations of these finite summations, e.g., ZP=1^2Pr(^) 

and Hr=1(-l)r QT(x) 9 are omitted in this treatment of the polynomials. 
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Induction can be used, with a little effort, to establish the explicit ex-
pressions r .-, 

PnW = i ( n - ^- 1 ) (2x)^ 2 - 1 (2.15) 
m=0 m ' 

and ^ -. 

171= 0 X in / 

where, in (2.16) we used the combinatorial identity 

n in - m\ n - \in - m\ n + 1 In - m + 1\ 
n - m\ m ) n - m\m-1/ n - m + l \ m / 

We proceed to prove (2.15). 

Proof of (2.15): The formula is trivially true for n = 1 and n - 2. Assume it 
is true for n = k and n = k - 1 where fc > 3. Then we have 

Pk+1(x) = 2xPk(x) + Pk_1M by (1.1) 

I f fe = 2 t , t h i s becomes 

i - 1 , 0 , ^ * - l 2: p - " 7 - 1 ) (2x ) 2 * - 2 m + x : ( 2 * - m - 2 ) ( 2 ^ ) « - 2 m - 2 

( 2*-1)(2 a ; ) 2* + (U-2)(2x)^-2 + (U-3)(2x)2t-" + .- . + (^JCZx) 2 

77 = 0 X ^ 7 777 = 0 X m ' 

by using Pascal's formula. Similarly, it holds if k is odd, and the proof is 
completed. 

Basic relationships involving Pn(x) and Qn(x) may be obtained from these 
combinatorial formulas, but the calculations required are tedious. Binet forms 
produce the same results more quickly. 

In passing, we note the differential calculus result: 

^ - * * „ ( * ) . (2.17) 

Later, in (6.20), we shall see that the first derivative of Pn(x) is given 
in terms of a (complex) Gegenbauer polynomial. 

Because Pn(x) and Qn(x) are generalizations of Fn and Ln, the collection of 
miscellaneous results for Fn and Ln given in [7] may be generalized; e.g., 

Qhn{x) - 2 = 4(x2 + l)P*„(x), (2.18) 

Pn_1{x)Pn+1{x) + Qn_x{x)Qn+1(x) = (4x2+ 5)P2(x) + (-l)""1^2- 1), (2.19) 
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and 
n£{2n^)P2k + pW - [ 4 (* 2 + 1 > ] " « 2 » + P + 1 < * > -

2n + l 

E 
k = 0 

( 2 .20 ) 

3 . MATRIX GENERATION OF FORMULAS 

We demons t ra te t h a t t h e m a t r i x 

~2x 1~ 

1 0 
(3.1) 

generates Pell polynomials and Pell-Lucas polynomials, and use it to establish 
some elementary properties of these polynomials. 

Induction, with (1.1), leads to 

pn 

whence 

P (x) 
n+ 1 v pn 

and 

P„(*) - [1 0]P 

1 

_0_ 

n-1 

The characteristic equation of P is 

X2 - 2xX - 1 = 0 

with eigenvalues 

[a = x + V^2 + 1 

$ = # - Vx2 + 1 

By the division algorithm for polynomials, 

An = (X2 - 2xX - l)f(X) + mX + k, 

where f(X) is of degree n - 2 in A and m, k are functions of x. 
Put X = a in (3.7). Then 

an = ma + k. 
Similarly, 

3 n = ̂ 3 + fc. 
Solving (3.8) and (3.9) yields 

-, k 
„ n -1 on-1 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 
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From (3.8) 

Pn = mP + kl. (3.11) 

Equate the top right elements in (3.11) to obtain m = Pn(x) so that the 
Binet form (1.7) for Pn(x) is again produced from (3.10). 

Use of (2.1) gives 

n + l (a?) 2x 

2 

and 

Ax) = [1 0]P" 
2x 

2 

for 

To illustrate the matrix technique, we prove 

= [ P m ( * ) , P ^ . ^ x ) ] ? " 

(3 .12) 

(3 .13) 

(3 .14) 

P„+1Cx) 

r 
0 

by ( 3 . 3 ) 

[1 0 ]P" by (3 .3 ) and PmPn = P m + n 

= P„+nW by ( 3 . 4 ) . 
S i m i l a r l y 

« „ + „ ( * ) = Pm-l(x)Qn(x) +Pm(x)Qn+1(x). 

From (3 .14) and (3 .15) w i t h (3 .2 ) and ( 3 . 1 2 ) , we d e r i v e 

and 

Pn+rW 

fnW -

QAx) 

Pp(x) •Pp,1(x) 

0 1 

'PP(X) Pr_1M~ 

0 1 

pn 

pn 

1 

0 

~2x 

2 

(3 .15) 

(3 .16) 

(3 .17) 

Equat ion ( 3 . 1 4 ) , i n c l u d i n g an i n t e r c h a n g e of m and n , i n con junc t ion wi th 
(2 .1 ) g i v e s 

Pm+nW = hiPm(x)Qn(x) + Pn(x)Qm(x)}9 (3 .18) 
while (3.15), including a replacement of m by w + 1 and n by n - 1, with (2.1) 
and (2.2) gives 
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„+„(») = h{Qm(.x)Qn(.x) + 4(x2 + l)Pra(x)Pn(x)}. (3.19) 

P u t t i n g J i = n i n (3 .18) and (3 .19) y i e l d s (2 .3 ) and ( 2 . 4 ) . F u r t h e r , 

s i n c e 
D2 ,M\ , -nl 

( 3 . 2 0 ) 

P n \ l<*> + W > = [ ? n + l W » P n ^ > ] LPn(x) _ 

[1 0 ]P 2 by (3 .2 ) and (3 .3 ) 

= P 0 n(a;) by 3 . 4 . 
2 n + l v y ^ 

R e s u l t (3 .20) a l s o fo l lows d i r e c t l y from (3 .14) w i t h m = n + 1. 
S i m i l a r l y , 

« n + l < * > + «»<*> = 4 ^ 2 + ^ ^ n + l ^ ' ( 3 ' 2 1 ) 

All the above results can, of course, be derived by using the Binet forms 
(1.7) and (1.8). Techniques employed in these sections give rise to the fol-
lowing formulas: 

[Pn(x)Qr(x) if v is even 
Pn+rW + Vr(*> = 

if v is odd 

W * > + «„„,(*) 

-c^+pV^) Pn_p(^) 

«n+r(*) - «„_,<*) 

^aOP^x) 

,0c) 6 r 0*0 r even 

>(x 2 + l)Pn(x)Pr (x) r odd 

^Qn(x)Pr (x) r even 

(pn(x)ep(x) r odd 

f4(x2 + l)Pn (x)Pr (x) r even 

2„(a0$r(a0 r odd 

P„2+r0*0 " *£_,(*> = P2n(x)P2p(x) by (3.22), (3.24) and (2.3) 

«n+r(x) ~ «»-!•<*> = 4 ^ 2 + DP2n(a:)P2l,W by (3.23), (3.25), 

"mfj+r (x^ 

and (2 .3 ) 

; P „ ( x ) e ( m . 1 ) n + r ( x ) + ( - l ) n P ( m . 2 ) n + > ) 

« „ » + , < * ) = ^ n - i ) n + , U ) e „ U ) + ( - D n " 1 « ( m - 2 ) n + r 

P 2 ( x ) - P n + r ( x ) P n _ r ( x ) = (-l)B"*P,2(a:) 

«»<*> " «„ + r 0 c ) e „ _ r ( x ) = ( - l ) M " r + 1 4 ( a ; 2 + l)Pr
2(x) 

P „ + 1 W P „ + S W - P n O O P n + „ + k 0 r ) = ( - l ) " P , ( x ) P ^ ( x ) 

Simson formulas 

12 

(3 .22 ) 

( 3 . 23 ) 

( 3 .24 ) 

(3 .25) 

(3 .26) 

(3 .27) 

(3 .28) 

(3 .29) 

(3 .30) 

(3 .31) 

(3 .32) 
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Qn + h(x)Qn+k(x) - Qn(x)Qn + h+k(x) = (~l)n-H(x2 + l)Ph(x)Pk(x) 

Pn+hMQn + k(x) - Pn(x)Qn+h+k(x) = (-lfph(x)Qk(x) 

Finally, we offer two relationships that can be described as being 
de Moivve type: 

and 
{Qn(x) + 2Vx2 + lPn(x)}r = 2r'1{Qnp(x) + 2Vx2 + lPnr(x)} 

{Qn(x) - 2Vx2 + \Pn{x)V = 2v-1{Qnl.(x) - 2Vx2 + lPnr(x)}. 

When x = ^ 5 (3 .35) and (3 .36) reduce t o 

and 
&F„)P LMT, - A F „ 

(3.33) 

(3.34) 

of the 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

respectivelys the first of which is given in [7, p. 60]. 
Results involving Pn(x) and Qn(x) are as multitudinous as the sands of the 

seashore, and one can gather these grains ad infinitum* ad nauseam. 

h. PASCAL ARRAYS GENERATING Pn (x), Qn(x) 

Consider the following table. 

Table 1: Pell Polynomials from Rising Diagonals 

^T 

1 

lOx 

(4.1) 

Denote the coefficient of the power of x in the mth row and nth column by 
(m, n). 

It is now shown that the rising diagonals presented in Table 1 produce the 
Pell polynomial (1.5). 

Define the entries in row m as the terms in the expansion (2x+ l)m~l
9 that 

is 

£ (m, n)xm~n = (2x + l)m~1 m > n. 
n=l 

(4.2) 
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Hence, 

(OT, n) =(m~ l)2m'n m > n. (4.3) 

Now t h e r i s i n g d i a g o n a l func t ion Rm(x) of degree m i n x i n Table 1 i s : 

^m(«) = E (rn + 1 - n, n ) x m + 1 " 2 " (m > 1) (4.4) 

V f m-n \ , „ ,m+1 
" „?, \m+l-2nY2x) 

ft1] 
= E ('"-""^(zx)'"-1 

- In by (4 .3 ) 

- 2n 

Now cons ide r Table 2. 

from (2.15.) 

Table 2: Pell-Lucas Polynomials from Rising Diagonals 

2 

22a? 

(4.5) 

Let [m9 n] denote the coefficient of the power of x in the mth row and nth 

column. 

We may define the entries in row m as the terms in the expansion of 

(2x + l)m + (2x + I)™-1 = (2a: + l)m~1(2a: + 2 ) , 

that is, 

m+ 1 
X [w, n]xm+1-n = (2a: + l)?7Z~1(2a: + 2) 
n= 1 

14 

(4.6) 
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and so 

[777, n] = 2(777, U) + 2(772, U - 1) = 2(772, Tl) + (777, U ~ 1) + (777, n - 1) 

= (m + 1, n) + (m, n - 1). (4.7) 

Denote the rising diagonal function of degree m in x in Table 2 by S (x). Then 

B2] 
^OTte) = E [rc + 1 - n , n ] x m + 2 " 2 n 

n = l 

m 
= E (fa + 2 - n> n) + (m + 1 - ^3 « - D } ^ w + 2 _ 2 n by (4 .7 ) 

n = l 

=[¥]r„-»)+(—)}< m + 2 - In by (4 .3 ) 

rc = 0 m - n tn") m - In on simplification 

QJx) by (2 .16) 

Thus, we have demonstrated that Pell and Pell-Lucas polynomials are gener-
ated by the rising diagonals in Table 1 and Table 2, respectively. 

Next, arrange the coefficients of the powers of x in Pn (x) , (1.5), in the 
following Pascal-like display. 

Table 3> Pell Polynomial Coefficients 

CoeffsT^\Powers 
in Pn (x) ̂ ^ \ ^ ^ 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0 

1 
0 
1 
0 
1 
0 
1 
0 
1 
0 

1 

2 
0 
4 
0 
6 
0 
8 
0 
10 

2 

4 
0 
12 
0 
24 
0 
40 
0 

3 

8 
0 
32 
0 
80 
0 

160 

4 

16 
0 
80 
0 

240 
0 

5 

32 
0 

192 
0 

672 

6 

64 
0 

448 
0 

7 

128 
0 

1024 

8 

256 
0 

9 ... 

512 

Designate the entry in the rth row and cth column of Table 3 by {r, a}, 
From the table and (2.15), we have: 

{2v, 2a} = 0 (4.8) 
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(/r+ c- 1\ 2c- l o = 1, 2, ..., r 
{2r, 2c - 1} = <\ r-o ) (4.9) 

V 0 c > v 
{2v - 1, 2c - 1} = 0 (4.10) 

((r+c- 1\ 2o c = 0, 1, 2, ..., v - 1 
{2p - 1, 2c} = U P - C- 1/Z (4.11) 

V 0 c > r 

Using (4.8)-(4-ll)5 we can prove: 

v- 1 
£ {2r - 1 - i, i} = 3P~1 (4.12) 

i= 0 

2r 

£ {i, 2c - 1} = %{2P + 1, 2c} (4.13) 
£= l 
2P 

£ {£, 2c} = ^{2P, 2C + 1} (4.14) 
i= 1 
2v- 1 
£{£, 2c - 1} = h{2r - 1, 2c} (4.15) 
£= 1 

2r- 1 

£{£, 2c} = ^{2P, 2C + 1} (4.16) 
i= 1 

Proof of (4.12) 

p- l 
]T (2r - 1 - i9 i] = {2P - 1, 0} + {2P - 2, 1} + ••• + {r, r - 1} 
i = 0 

= e : ! ) 2 ° + C : : 2 ) 2 l + "- + ( V ) 2 r ~ 1 b^(4-9) 
X P i 7 X P ' N U 7 and (4 .11) 

= (i + ly-1 = a21-1 

Proof o f (4 .13) 

2r 
E B , 2c - 1} = {2, 2c - 1} + {4, 2c - 1} + ••• + {2r, 2c - 1} by (4.10) 

i= 1 
= {2cs 2c - 1} + {2c + 2, 2c - 1} + ••• + {2r, 2c - 1} 

- * — ( ( V ) • ( ? ) • • • • • f" ; 1 ) ) *":>> 
- ^ ( e i i ) * ^ ) * - * Ci°-V)) 
= 220~1(^2oC) by identity C1-52) in [6] 

= ^{2P + 1, 2c} by (4.11) 

If a similar table for Qn(x) is constructed, and if we designate the ele-
ment in row v and column c by r, c, we have from (2.1) that 
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p, c = { P + 1, c} + {p - 1, c} = 2{p, c - 1} + 2{r - 1, a}. (4.17) 

Properties of p, c may then be developed on the basis of (4.8)-(4.11). 
From (2.2), we derive 

2? + 1, c + r - ls c = 4{p, c] + 4{P, c - 2}. (4.18) 

To conclude this section, we establish a relationship between (m, n) and 
{p, c} in Tables 1 and 3, respectively (both relating to the Pell polynomials). 
A relationship between [m, n] and p, c will also be formulated for the Pell-
Lucas polynomials. 

Now in (4.9), 2c - 1 is the power of x in P2r(x). Comparing the coeffi-
cient of the term x2c~1 in (2.15) with that in (4.3), where we recall that 

(m-l\= (m-l\ 
\m- nj \n- 1/ 

we deduce that 

{2P, 2c - 1} = (p + c, r - o + 1) (4.19) 

and so 

(p, c) = { P + a - 1, r - c}. (4.20) 

A similar argument applied to (2.15) and (4.3) for (4.1) yields 

{2P - 1, 2c} = (r + c9 r - c) 

whence (4.20) results again. 
Lastly, consider 2P, 2c, the coefficient of x2° in Q2r(x). From (4.17), 

*rE-((;:3 + (;:-i))2». 
Using (4.7) with (4.3), we find 

r i 11 W \ , (m~ l\\0m-n+l 
[m'w] - (U-i) + U-2)j2 

whence, by comparison of the two forms, 
2r, 2c = [r + c, r - c + 1]. (4.21) 

Reversely, 

[p, c] = P + c - 1, P - c + 1. (4.22) 

A similar formula to (4.21) is 

2P - 1, 2c + 1 = [P + c, P - c] 

whence (4.22) results again. 

5. DETERMINANTAL GENERATION OF Pn (x) , gn(a?) 

Write <iv- for the element in the ith row and j t h column of an n x n deter-
minant. 

Let hn(x) be the n x n determinant defined by 

( dn = 2x £ = 1 , 2 , .. ., n 

V <f ̂ = 0 otherwise 
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From An(x) , the determinants Sn(x) s A*(x), and 6*(x) are defined as follows: 

6n(x): as for An(x) except that diti+i = — 1, difi_l= 1 (5.2) 

A*(x): as for An(x) except that d12 = 2, ̂  i + 1 = 1 (5.3) 
(i = 2, ..., n - 1) 

6*(a:): as for An0r) except that d12 = -2, ̂  i + 1 = -1 (5.4) 
(i = 2, ..., n - 1) ^,'i-i = 1-

Induction and expansion along the first row, together with basic properties 
of Pn(x) and Qn(x), e.g., (1.1), (2.1), yield 

A n W = Pn + 1W (5.5) 

6n(tf) = Pn + 1(x) (5.6) 

A* (a:) = Cn(a?) (5.7) 

6* Or) = «n(x). (5.8) 

In the process of expansion, we derive recurrence relations such as 

Ak(x) = 2xAk_±{x) + Ak_2(x) k > 3 (5.9) 
and 

A*Or) = 2arA*.1(a?) + 2A*_2(a?) & > 3. (5.10) 

6. RELATIONS OF Pn (x) , Qn (a?) TO OTHER FUNCTIONS 

Perhaps the simplest results relating Pn (x) to other functions are found in 
[4]: 

P2n(x) = sinh 2nt/cosh t } (6.1) 
> ar = sinh t 

p2n + i(x) = cosh(2n + l)£/cosh t ) (6.2) 
Hence 

Q2n(x) = 2 cosh Inb \ (6.3) 
> x - sinh £ 

Szn + i^) = 2 sinh(2n + l)t } (6.4) 

Comparison of the explicit summation formulas for Pn{x) and Qn(x) given in 
(2.15) and (2.16) with the explicit summation formulas for Un(x) and Tn(x), the 
Chebyshev polynomials of the second and first kinds, respectively (see [11]), 
shows that 

Pn(x) = (-i)"-X-i(w:) <6-5) 
and 

Qn(x) = 2(-i)nTn(ix) (6.6) 
i.e., Pn(x) and Qn{x) are modified Chebyshev polynomials in a complex variable. 
To reconcile the form in [11] with (2.16) we had to replace the Gamma function, 
namely, T(n - m) - (n - m - 1)! 

Because of (6.5) and (6.6), Pn(x) and Qn(x) would have [9] complex hyper-
geometric representations. Other representations also exist in view of the 
many forms the expressions for Un(x) and Tn(x) can take. 

In particular, we may record that 

Pn (i cosh x) = £rz"1sinh n#/sinh x (6.7) 
and 

Qn(i cosh x) = 2£ncosh nx. (6.8) 
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From (1.1) we observe that 

Pn+1(ix) + Pn_1{ix) = Qn{ix) 

leads, with the help of (6.5) and (6.6), to 

Un(ix) - Un_2(ix) = 2Tn(ix), (6.9) 

which is a complex version of a basic relationship between the two kinds of 
Chebyshev polynomials. Similarly, other Chebyshev relationships may be tied to 
corresponding relationships involving Pn(x) and Qn(x). 

Finally, we allude to the Gegeribauer (ultraspherical) polynomial of degree 
n and order v, C^(x), defined by 

Y,Cl(x)tn = (1 - 2xt + t2)"v (v > 0, \t\ < 1). (6.10) 
n = 0 

with explicit forms 

2 ( - l ) p / n - r\ro^n- iv 
r = 0 

and 

C°(x) = i j - ^ - ( n _ r ) ( 2 x ) n - 2 r C°.(x) = 1 (v = 0) (6.11) 

I 2 I 
C ~ W = T^o S ( - D F ( n - *•+ l ) t r ) ( 2 a : ) ( v > - ^ ; v ^ 0 ) . (6.12) 

A recurrence relation for C^(x) is 

(n + 2)Cnv+2(x) = 2(n + v + l)xC^+i(x) - (n + 2v)c£(a?) (6.13) 

which, for V = 1, reduces to 

C^+2(x) = 2x^+1(x) - C^x) (6.14) 

with 

Cl(x) = 1 , C\(x) = 2#. (6.15) 

Clearly, ££(*) = £/„(*), and by (6.5), 

Pn(x) = (-i)*"1^^ (&»).- (6.16) 

When v = 0, (6.11), where (7°  Or) = 2x, gives 

so that (6.6) gives 

Qn(x) = n(-i) C°(ix) (n > 1) (6.17) 

i.e., Pn(x), Qn(n) are modified Gegenbauer polynomials in a complex variable. 
As the Fibonacci and Lucas numbers arise from Pn(x) and Qn(x) when x = %, 

we have, from (6.16) and (6.17), 

and 

*i-c!(l) -1. Fn- W - ^ d ) (6.18) 

£0 = 2̂ o (f) = 2 , L„ = n(-D n ^(|) n > 1. (6.19) 

Using the known [9] result dTn{x)/dx = nUn_1(x) from [11] with (6.5) and 
(6.6), we can arrive back at (2.17), viz., dQn(x)/dx = 2nPn(x). 
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Differentiating in (2.15) and applying (6.12) in the case v = 2, we deduce 
that 

^^-2(-i)»-*<7*_2(t«). (6.20) 

Alternatively, we may differentiate in (6.16) and invoke the result [11] 

dCv
n(x) V + l 

dx 2vC_Ax) 

to obtain (6.20). 
Some of the above results, e.g., (6.16), were generalized in [12] for the 

sequence of polynomials {Ak(x)} defined by 

An+2(x) = 2xAn+1(x) + An(x) AQ(x) = s, A1(x) = r. (6.21) 

Of course, {An(x)} is a special case of the sequence {Wn(p, q; a, b)}, some of 
whose properties are documented in [8]. 

Information related to some aspects of the above ideas can be found in [1], 
[2], [3], [4], [5], [9], and [10]. 
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