A CONGRUENCE FOR A CLASS OF EXPONENTIAL NUMBERS

A. KYRIAKOYSSIS

University of Athens, Couponia, Athens (621)-Greece
(Submitted June 1983)

1. INTRODUCTION

A sequence of exponential numbers, say P_{n}, is defined by its exponential generating function as

$$
\sum_{n=0}^{\infty} P_{n} x^{n} / n!=\exp \{g(x)\}
$$

for some (formal) power series $g(x)$ with constant term zero.
As regards Bell numbers $\left[g(x)=e^{x}-1\right]$, Lunnon, Pleasants, and Stephens [6] showed that for each positive integer n, there exist integers $\alpha_{0}, \alpha_{1}, \ldots$, α_{n-1} such that, for all $m \geqslant 0$,
$P_{m+n}+\alpha_{n-1} P_{m+n-1}+\cdots+\alpha_{0} P_{m} \equiv 0(\bmod n!)$.
In this paper, we show a similar congruence for the exponential numbers P_{n} when $g(x)$ is a certain series function (Section 2). Special cases include numbers P_{n} equal to the number of permutations of n elements having cycles with given maximal and minimal size or equal to the sum of the horizontal entries of the table of Jordan [5, p. 223], also for P_{n} equal to the generalized derangement numbers.

2. THE CONGRUENCE

Theorem. Suppose

$$
g(x)=\sum_{j=1}^{\infty} b_{j} \frac{x^{j}}{j}
$$

where the b_{j} are integers. Let

$$
\begin{equation*}
e^{g(x)}=\sum_{n=0}^{\infty} P_{n} \frac{x^{n}}{n!} \tag{1}
\end{equation*}
$$

and let

$$
\begin{equation*}
\frac{y^{k}}{k!} e^{-g(y)}=\sum_{n=k}^{\infty} D_{n}, k \frac{y^{n}}{n!} . \tag{2}
\end{equation*}
$$

Then, for each $m, n \geqslant 0$,

$$
\begin{aligned}
& \sum_{k=0}^{n} D_{n, k} P_{m+k} \equiv 0 \quad(\bmod n!) \\
& \underline{\text { Proof: }} \text { Let } f(x)=e^{g(x)} . \text { Then }
\end{aligned}
$$

$$
e^{-g(y)} f(x+y)=\sum_{k=0}^{\infty} e^{-g(y)} \frac{y^{k}}{k!} f^{(k)}(x)=\sum_{m, n=0}^{\infty} \frac{x^{m}}{m!} \frac{y^{n}}{n!} \sum_{k=0}^{n} D_{n, k} P_{m+k}
$$

Thus, it is sufficient to show that the coefficient of $x^{m} / m!$ in $e^{-g(y)} f(x+y)$ is a power series in y with integer coefficients.

Now we have

$$
e^{-g(y)} f(x+y)=\exp \left[\sum_{i=1}^{\infty} g^{(i)}(y) \frac{x^{i}}{i!}\right] .
$$

Since $g^{\prime}(y)=\sum_{j=0}^{\infty} b_{j+1} y^{j}, g^{(i)}(y)$ is a power series in y with integer coefficients, $\sum_{i=1}^{\infty} g^{(i)}(y) x^{i} / i$! is a Hurwitz series in x (in the sense that the coefficient of x_{i} / i ! is a power series with integer coefficients). Thus,
$\exp \left[\sum_{i=1}^{\infty} g^{(i)}(y) \frac{x^{i}}{i!}\right]$
is also a Hurwitz series in x, which proves the theorem.
Remarks: We have that $g(x)$ is a Hurwitz series. Using the fact that $[g(x)]^{k} / k$! is also a Hurwitz series for any nonnegative integer k, we define the integers $A(n, k)$ by

$$
\begin{equation*}
\sum_{n=k}^{\infty} A(n, k) x^{n} / n!=[g(x)]^{k} / k! \tag{3}
\end{equation*}
$$

Then, from (1), we have

$$
\begin{equation*}
P_{n}=\sum_{k=0}^{n} A(n, k), \quad P_{0}=1 \tag{4}
\end{equation*}
$$

From (2), we have

$$
\begin{aligned}
\sum_{n=k}^{\infty} D_{n, k} y^{n} / n! & =\left(y^{k} / k!\right) \sum_{i=0}^{\infty}(-1)^{i}\{g(y)\}^{i} / i! \\
& =\sum_{i=0}^{\infty}(-1)^{i} \sum_{j=i}^{\infty} A(j, i) y^{j+k} / k!j! \\
& =\sum_{i=0}^{\infty}(-1)^{i} \sum_{n=i+k}^{\infty} A(n-k, i)\binom{n}{k} y^{n} / n! \\
& =\sum_{n=k}^{\infty} \sum_{i=0}^{n-k}\binom{n}{k}(-1)^{i} A(n-k, i) y^{n} / n!,
\end{aligned}
$$

and consequently,

$$
D_{n, k}=\binom{n}{k} \sum_{i=0}^{n-k}(-1)^{i} A(n-k, i)
$$

For tabulation purposes, we may obtain a recurrence relation for the integers $D_{n, k}$. Using (2), we have

$$
\begin{equation*}
D(u, y)=\sum_{n, k} D_{n, k} u^{k} y^{n} / n!=e^{-g(y)+u y} \tag{5}
\end{equation*}
$$

By differentiating both sides of (5) with respect to y, we obtain

$$
\frac{\partial}{\partial y} D(u, y)=-e^{-g(y)} g^{\prime}(y) e^{u y}+e^{-g(y)} e^{u y} u=D(u, y)\left\{-g^{\prime}(y)+u\right\}
$$

Equating coefficients of $u^{k} y^{n} / n!$, we obtain

$$
D_{n+1, k}=D_{n, k-1}-\sum_{i=0}^{n}\binom{n}{i} b_{n-i+1}(n-i+1)!D_{i, k} \quad \text { for } n, k \geqslant 0,
$$

with $D_{0,0}=1$ and $D_{n, k}=0$ for $k>n$ or $k<0$.
It may be noted that $f(x)=e^{g(x)}$ counts permutations in which a cycle of length j is weighted b_{j}.

3. SPECIAL CASES

We shall now give some special cases of $g(x)$ for which the numbers P_{n} are of great interest in Combinatorics.
a. $g(x)=\sum_{j \in S} x^{j} / j$ where S is any set of positive integers.

Then $f(x)=e^{g(x)}$ counts permutations with all cycle lengths in S. For $S=$ $\{1,2\}, g(x)=x+x^{2} / 2$, and the numbers

$$
P_{n}=t_{n}=\sum_{k=[n / 2]}^{n} A(n, k)
$$

have been studied by Moore [3], Moser and Wyman [7], and others. From [4], we have a congruence for t_{n} which is a special case of our theorem.
b. $g(x)=\sum_{j=r}^{s} \frac{(s)_{j}}{(j-1)!} \frac{x^{j}}{j}=(1+x)^{s}-\sum_{j=0}^{r-1} \frac{(s)_{j}}{(j-1)!} \frac{x^{j}}{j}$, r, s integers, $1 \leqslant r<s$.

Then $A(n, k)$ have occurred as coefficients in the k-fold convolution of binomial distributions truncated at the point $r-1$ (see [1]). In the case in which $r=1, A(n, k)=(1 / n!)\left[\Delta^{k}(s x)_{n}\right]_{x=0}$ (see [2]), and the numbers

$$
P_{n}=\sum_{k=[n / s]}^{n} A(n, k)
$$

occur in combinatorial analysis being in fact P_{n} is equal to the sum of the horizontal entries of the table of Jordan (see [5, p. 223]).

$$
\text { c. } g(x)=(s-1) x+s \sum_{j=2}^{\infty} x^{j} / j=-x-s \log (1-x), s \text { an integer, } s \geqslant 1
$$

Then P_{n} is equal to the generalized derangement numbers $d(n, s)$ [for $s=1$, we have the derangement number $d(n)]$.

ACKNOWLEDGMENT

Thanks are due to the referee, whose suggestions greatly improved the presentation of this material.

```
A CONGRUENCE FOR A CLASS OF EXPONENTIAL NUMBERS
```


REFERENCES

1. T. Cacoullos \& Ch. Charalambides. "M.V.U.E. for Truncated Discrete Distributions." In Progress in Statistics, Vol. I, pp. 133-44. Edited by J. Gani et al. Amsterdam: North-Holland, 1974.
2. Ch. Charalambides. "A New Kind of Numbers Appearing in the n-Fold Convolution of Truncated Binomial and Negative Binomial Distributions." SIAM J. Appl. Math. 33 (1977):279-88.
3. S. Chowla, I. N. Herstein, \& W. K. Moore. "On Recursions Connected with Symmetric Groups I." Canad. J. Math. 3 (1951):328-34.
4. Ira Gesse1. "Congruences for Bell and Tangent Numbers." The Fibonacci Quarterly 19, no. 2 (1981):137-44.
5. C. Jordan. Calculus of Finite Differences. 3rd ed. New York: Chelsea Publishing Company, 1965.
6. W. F. Lunnon, P.A. B. Pleasants, \& N. M. Stephens. "Arithmetic Properties of Bell Numbers to a Composite Modulus I." Acta Arith. 35 (1979):1-16.
7. Leo Moser \& Max Wyman. "On Solutions of $X^{d}=1$ in Symmetric Groups." Canad. J. Math. 7 (1955):159-68.
