## REGENERATION POINTS IN RANDOM PERMUTATIONS

## A. J. STAM

Mathematisch Instituut der Rijksuniversiteit, 9700 AV Groningen, Netherlands (Submitted July 1983)

## 1. INTRODUCTION

In this paper, we study a sequence of positive integers defined by recurrence that have applications in combinatorics and probability theory.

Let $\sigma$ be a permutation of $\mathbb{N}_{n}=\{1, \ldots, n\}$, i.e., a bijection $\mathbb{N}_{n} \rightarrow \mathbb{N}_{n}$. Then $k \in \mathbb{N}_{n}$ is a regeneration point of $\sigma$ if $\sigma\left(\mathbb{N}_{k}\right)=\mathbb{N}_{k}$. Here $\sigma$ will be a random permutation, i.e., we consider $\sigma$ to be chosen at random from the set $S_{n}$ of permutations of $\mathbb{N}_{n}$. Equivalently, we define a probability measure $P_{n}$ on the power set of $S_{n}$ by $P_{n}\left(\left\{\sigma_{0}\right\}\right)=P_{n}\left(\sigma=\sigma_{0}\right)=1 / n!, \sigma_{0} \in S_{n}$. Expectation with respect to $P_{n}$ will be denoted by $E_{n}$.

Let $A_{k}$ be the event that $k$ is a regeneration point of the random permutation. Then

$$
\begin{equation*}
P_{n}\left(A_{k}\right)=k!(n-k)!/ n!=\binom{n}{k}^{-1}, \quad k \in \mathbb{N}_{n} . \tag{1.1}
\end{equation*}
$$

For the event that $k_{1}, \ldots, k_{r}$, with $1 \leqslant k_{1}<\cdots<k_{r} \leqslant n$, are regeneration points, we have

$$
\begin{equation*}
P_{n}\left(A_{k_{1}} A_{k_{2}} \ldots A_{k_{r}}\right)=k_{1}!\left(k_{2}-k_{1}\right)!\ldots\left(k_{r}-k_{r-1}\right)!\left(n-k_{r}\right)!/ n!. \tag{1.2}
\end{equation*}
$$

Let $M$ be the total number of regeneration points in $\sigma$. The (factorial) moments of $M$ can be expressed in terms of (1.2), e.g.,

$$
\begin{equation*}
E_{n} M=1+Q_{n}=1+\sum_{k=1}^{n-1} P_{n}\left(A_{k}\right)=1+\sum_{k=1}^{n-1}\binom{n}{k}^{-1} . \tag{1.3}
\end{equation*}
$$

Note that $n$ is always a regeneration point.
The theory of regeneration points is dominated by the numbers $c_{n}$ or $c(n)$, $n=1,2, \ldots$, where $c_{n}$ is the number of elements of $S_{n}$ that have only one regeneration point, or

$$
\begin{equation*}
P_{n}(M=1)=c_{n} / n!, \quad n=1,2, \ldots . \tag{1.4}
\end{equation*}
$$

This will be seen in Section 2. Here we mention the relation

$$
\begin{equation*}
P_{n}(k)=P_{n}(\nu=k)=c_{k}(n-k)!/ n!, \quad k \in \mathbb{N}_{n}, \tag{1.5}
\end{equation*}
$$

where $v$ is the first regeneration point of the random permutation $\sigma$. Since $P_{n}(1)+\cdots+P_{n}(n)=1$, we have

$$
\begin{equation*}
\sum_{k=1}^{n}(n-k)!c_{k} / n!=1, \quad n \geqslant 1 \tag{1.6}
\end{equation*}
$$

The $c_{n}$ can be computed recursively from (1.6). We find

$$
\begin{align*}
& c_{1}=c_{2}=1, \quad c_{3}=3, \quad c_{4}=13, \quad c_{5}=71  \tag{1.7}\\
& c_{6}=461, \quad c_{7}=3447=9 \times 383
\end{align*}
$$

From (1.6) we see, by induction on $n$, that the $c_{n}$ are odd. Divisibility of the $c_{n}$ is considered in Section 4. By (1.4), the principle of inclusion and exclusion, and by (1.2),

$$
\begin{equation*}
c_{n} / n!=1-P\left(A_{1} \cup \cdots \cup A_{n-1}\right)=1+\sum_{h=1}^{n-1}(-1)^{h} T_{h}=\sum_{n=0}^{n-1}(-1)^{h} T_{h} . \tag{1.8}
\end{equation*}
$$

Here $T_{0}=1$ and for $h>0$,

$$
\begin{aligned}
T_{h}=\sum^{\prime} P_{n}\left(A_{i_{1}} A_{i_{2}} \ldots A_{i_{h}}\right) & =\sum^{\prime} i_{1}!\left(i_{2}-i_{1}\right)!\ldots\left(i_{h}-i_{h-1}\right)!\left(n-i_{h}\right)!/ n! \\
& =\sum^{\prime \prime} j_{1}!j_{2}!\ldots j_{h+1}!/ n!
\end{aligned}
$$

where $\sum^{\prime}$ sums over all $i_{1}, \ldots, i_{h}$ with $1 \leqslant i_{1}<\cdots<i_{h} \leqslant n-1$ and $\sum^{\prime \prime}$ over all $j_{1} \geqslant 1, \ldots, j_{h+1} \geqslant 1$ with $j_{1}+\cdots+j_{h+1}=n$. In (1.8) this gives, by putting $h=m-1$.

$$
\begin{equation*}
c_{n}=\sum_{m=1}^{n}(-1)^{m-1} \Sigma^{*} j_{1}!\ldots j_{m}!, \quad n \geqslant 1 \tag{1.9}
\end{equation*}
$$

where $\sum^{*}$ sums over all $j_{1} \geqslant 1, \ldots, j_{m} \geqslant 1$ with $j_{1}+\cdots+j_{m}=n$.
In Section 2, an integral equation for the exponential generating function of the $c_{n}$ will be derived. Section 3 studies the asymptotic behavior of $c_{n}$ for $n \rightarrow \infty$. We have $c_{n} / n!\rightarrow 1$, so $M$ tends to 1 in probability as $n \rightarrow \infty$. In Section 5 , some applications of the $c_{n}$ in combinatorial probability theory are given.

## 2. GENERAL FORMULAS

For the total number $M$ of regeneration points we find, by specifying regeneration points only at $j_{1}, j_{1}+j_{2}, \ldots, j_{1}+\cdots+j_{m}=n$,

$$
\begin{equation*}
P_{n}(M=m)=\sum^{*} c\left(j_{1}\right) c\left(j_{2}\right) \cdots c\left(j_{m}\right) / n!, \quad m \in \mathbb{N}_{n}, \tag{2.1}
\end{equation*}
$$

where $\Sigma^{*}$ is the same as in (1.9). The event $\{M \geqslant m\}$, with $m \geqslant 2$, means that there are at least $m-1$ regeneration points in $\{1, \ldots, n-1\}$. This gives, in the same way as (2.1),

$$
\begin{align*}
P_{n}(M \geqslant m) & =\sum^{\prime} c\left(j_{1}\right) \cdots c\left(j_{m-1}\right)\left(n-j_{1}-\cdots-j_{m-1}\right)!/ n! \\
& =\sum^{*} c\left(j_{1}\right) \cdots c\left(j_{m-1}\right) j_{m}!/ n!, m=2, \cdots, n \tag{2.2}
\end{align*}
$$

where $\sum^{\prime}$ sums over all $j_{1} \geqslant 1, \ldots, j_{m-1} \geqslant 1$ with $j_{1}+\cdots+j_{m-1} \leqslant n-1$ and $\Sigma^{*}$ is the same as in (1.9).

For the first regeneration point $\nu$ we have, with (1.5),

$$
\begin{align*}
E_{n} \nu & =\sum_{k=1}^{n} k c_{k}(n-k)!/ n!=\sum_{k=1}^{n}(n+1) P_{n}(k)-\sum_{k=1}^{n} c_{k}(n+1-k)!/ n!  \tag{2.3}\\
& =(n+1)-(n+1) \sum_{k=1}^{n} P_{n+1}(k)=(n+1) P_{n+1}(n+1)=c_{n+1} / n!
\end{align*}
$$

From the relation $k^{2}=(n+2-k)(n+1-k)+(2 n+3) k-(n+2)(n+1)$, we find, in a similar way,

$$
\begin{equation*}
E_{n} \nu^{2}=\left\{2(n+1) c_{n+1}-c_{n+2}\right\} / n! \tag{2.4}
\end{equation*}
$$

## REGENERATION POINTS IN RANDOM PERMUTATIONS

Let

$$
\begin{equation*}
C(z)=\sum_{k=1}^{\infty} z^{k} c_{k} / k!, \quad|z|<1 \tag{2.5}
\end{equation*}
$$

From (1.6),

$$
\begin{aligned}
z(1-z)^{-1} & =\sum_{n=1}^{\infty} z^{n} \sum_{k=1}^{n} c_{k}(n-k)!/ n!=\sum_{k=1}^{\infty} c_{k} \sum_{n=k}^{\infty} z^{n}(n-k)!/ n! \\
& =\sum_{k=1}^{\infty} c_{k} \sum_{j=0}^{\infty} z^{k+j} j!/(k+j)!
\end{aligned}
$$

With the relation

$$
\int_{0}^{z}(z-x)^{k-1}(1-x)^{-1} d x=(k-1)!\sum_{j=0}^{\infty} z^{k+j} j!/(k+j)!,
$$

to be derived by putting $x=z t$ and expanding $(1-z t)^{-1}$, we see that

$$
z(1-z)^{-1}=\int_{0}^{z} C^{\prime}(z-x)(1-x)^{-1} d x
$$

and with partial integration, noting that $C(0)=0$,

$$
\begin{equation*}
z(1-z)^{-1}=C(z)+\int_{0}^{z}(1-x)^{-2} C(z-x) d x, \quad|z|<1 \tag{2.6}
\end{equation*}
$$

The author was unable to find a solution of (2.6) in closed form. The Neumann series solution gives a series of iterated convolutions which, on expansion into powers of $z$, leads back to (1.9).

## 3. ASYMPTOTIC BEHAVIOR

We use the notation for falling factorials

$$
\begin{equation*}
(n)_{r}=n!/(n-r)!, \quad r=0, \ldots, n, \quad n=1,2, \ldots . \tag{3.1}
\end{equation*}
$$

First we consider $Q_{n}=E_{n} M-1$ given by (1.3). Rockett [4] gave an expression for

$$
\sum\binom{n}{k}^{-1}
$$

but direct use of (1.3) seems better for asymptotic estimates. We have

$$
\begin{align*}
& Q_{n}=2 n^{-1}+4(n)_{2}^{-1}+V\left(n_{3}\right)^{-1}, \quad n \geqslant 6  \tag{3.2}\\
& V_{n}=\sum_{k=3}^{n-3} k!(n-k)!/(n-3)!, \quad n \geqslant 6 \tag{3.3}
\end{align*}
$$

Theorem 1. We have

$$
\begin{equation*}
V_{n} \geqslant 12, n \geqslant 7 ; \quad V_{n} \leqslant 156 / 7, n \geqslant 6 ; \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
V_{n}=12+O\left(n^{-1}\right), n \rightarrow \infty ; \tag{3.5}
\end{equation*}
$$

$V_{n+1}<V_{n}, n \geqslant 11$.
$k=\frac{\text { Proof }: ~ T h e ~ f i r s t ~ i n e q u a l i t y ~ i n ~(3.4) ~ f o l l o w s ~ b y ~ c o n s i d e r i n g ~ t h e ~ t e r m s ~ w i t h ~}{3 \text { and }} k=n-3$ in (3.3). The relation (3.5) follows by estimating the 1985]
terms in (3.3) with $k=4, k=n-4$, and $5 \leqslant k \leqslant n-5$. From (3.3), for $n \geqslant 6$,

$$
\begin{align*}
V_{n+1}-V_{n} & =6+\sum_{k=3}^{n-3} k!(n-k)!\left\{(n+1-k)(n-2)^{-1}-1\right\} /(n-3)! \\
& =6+4(n-2)^{-1} V_{n}-\sum_{k=3}^{n-3}(k+1)!(n-k)!/(n-2)!  \tag{3.7}\\
& =6+4(n-2)^{-1} V_{n}-\sum_{n=4}^{n-2} h!(n+1-h)!/(n-2)! \\
& =12+4(n-2)^{-1} V_{n}-V_{n+1}
\end{align*}
$$

so that $2 V_{n+1}=12+(n+2)(n-2)^{-1} V_{n}$. Substituting this into (3.7) shows that $V_{n+1}<V_{n}$, for $n \geqslant 6$, if and only if

$$
\begin{equation*}
V_{n}>12+48(n-6)^{-1} \tag{3.8}
\end{equation*}
$$

From the terms in (3.3) with $k \leqslant 5$ and $k \geqslant n-5$,

$$
V_{n} \geqslant 12+48(n-3)^{-1}+240(n-3)^{-1}(n-4)^{-1}, \quad n \geqslant 11
$$

Applying this to (3.8) we find (3.6). From (3.6) and direct computation of $V_{n}$, $n=6, \ldots, 11$, we see that $\max V_{n}=156 / 7$ is reached for $n=11$. Better bounds for larger $n$ may be obtained from (3.6) by computing some $V_{n}$.

For the study of $c_{n}$, we introduce the following notation, see (1.5) and (3.1) :

$$
\begin{align*}
& H_{n}=1-c_{n} / n!=P_{n}(\nu \leqslant n-1)=\sum_{k=1}^{n-1} c_{k}(n-k)!/ n!;  \tag{3.9}\\
& D_{n}=(n)_{3}\left\{H_{n}-2 n^{-1}-(n)_{2}^{-1}\right\}, \quad n \geqslant 3 . \tag{3.10}
\end{align*}
$$

We need some numerical values of $n H_{n}$ and $D_{n}$. By means of (1.6), (3.9), and (3.10), the values of $n H_{n}$ and $D_{n}$ for $3 \leqslant n \leqslant 200$ were computed for the author at the University of Groningen Computing Centre. Part of the values are given in Tables 1 and 2, but the most important numerical result is

$$
\begin{equation*}
D_{n+1}<D_{n}, \quad n=13, \ldots, 199 \tag{3.11}
\end{equation*}
$$

Table 1

| $n$ | $n H_{n}$ | $n$ | $n H_{n}$ | $n$ | $n H_{n}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.000000 | 4 | 1.833333 | 7 | 2.212500 |
| 2 | 1.000000 | 5 | 2.041667 | 8 | 2.227579 |
| 3 | 1.500000 | 6 | 2.158333 | 9 | 2.220660 |

Theorem 2. With $D_{n}$ defined by (3.9) and (3.10),
$D_{n}>4, n \geqslant 9 ; D_{n}<6, n \geqslant 20$.
Proof: Since $c_{k} \leqslant k$ !, we see from (3.9), (1.1), (1.3), (3.2), and (3.4) that $n H_{n} \leqslant n Q_{n}<3, n \geqslant 9$.

With Table 1, we then extend this to $n H_{n}<3, n \geqslant 1$.
From (3.9), for $n \geqslant 7$,

$$
\begin{align*}
n!H_{n} \geqslant(n-1)!c_{1} & +(n-2)!c_{2}+(n-3)!c_{3}  \tag{3.14}\\
& +6 c(n-3)+2 c(n-2)+c(n-1)
\end{align*}
$$

With (1.7) and (3.13), writing $c_{k}=k!\left(1-H_{k}\right)$ for $k \geqslant n-3$, this gives $H_{n}>2 n^{-1}+3(n)_{3}^{-1}-18(n)_{4}^{-1}, \quad n \geqslant 7$.
From (3.15) we see that $n H_{n}>2, n>9$, and then from Table 1, $n H_{n}>2, \quad n \geqslant 5$.
From (3.9) for $n \geqslant 9$, with $c_{k} \leqslant k!$,

$$
\begin{equation*}
n!H_{n} \leqslant\left(\sum_{k=1}^{4}+\sum_{k=n-4}^{n-1}\right) c_{k}(n-k)!+(n-9) 5!(n-5)! \tag{3.17}
\end{equation*}
$$

With (1.7) and (3.16), writing $c_{k}=k!\left(1-H_{k}\right)$ for $k \geqslant n-4$, we find $H_{n} \leqslant 2 n^{-1}+(n)_{2}^{-1}+h(n)(n)_{3}^{-1}, \quad n \geqslant 9$; $h(n)=5+25(n-3)^{-1}+(120(n-9)-48)(n-3)^{-1}(n-4)^{-1}$.

Table 2

| $n$ | $D_{n}$ | $n$ | $D_{n}$ | $n$ | $D_{n}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | -2.000000 | 10 | 6.625992 | 17 | 6.687779 |
| 4 | -3.000000 | 11 | 7.376414 | 18 | 6.406247 |
| 5 | -2.500000 | 12 | 7.702940 | 19 | 6.156020 |
| 6 | -0.833333 | 13 | 7.726892 | 20 | 5.939237 |
| 7 | 1.375000 | 14 | 7.561317 | 21 | 5.754089 |
| 8 | 3.558333 | 15 | 7.295355 | 21 | 5.596962 |
| 9 | 5.356944 | 16 | 6.991231 | 23 | 5.463713 |

By elementary computation we see that $h(n+1)<h(n)$ for $145 n>1876$ or $n \geqslant 13$ and $h(196)<6$, so that $h(n)<6, n \geqslant 196$. Hence, $D_{n}<6, n \geqslant 196$, by (3.10). The second inequality in (3.12) then follows from (3.11) and Table 2, and it shows that

$$
\begin{equation*}
H_{n}<2 n^{-1}+2(n)_{2}^{-1}, \quad n \geqslant 20 . \tag{3.20}
\end{equation*}
$$

From (3.9), for $n \geqslant 9$,

$$
n!H_{n} \geqslant\left(\sum_{k=1}^{4}+\sum_{k=n-4}^{n-1}\right) e_{k}(n-k)!
$$

Here we apply (1.7) for $k \leqslant 4$ and write $c_{k}=k!\left(1-H_{k}\right)$ for $k \geqslant n-4$. Application of (3.20) for $k=n-3, n-4$, and of (3.10) with $D_{n}<6$ then gives

$$
\begin{equation*}
H_{n}>2 n^{-1}+(n)_{2}^{-1}+4(n)_{3}^{-1}+g(n)(n)_{4}^{-1}, \quad n \geqslant 24 ; \tag{3.21}
\end{equation*}
$$

$$
\begin{equation*}
g(n)=17-72(n-4)^{-1}-48(n-4)^{-1}(n-5)^{-1} \tag{3.22}
\end{equation*}
$$

Since $g(n+1)>g(n), n \geqslant 6$, and $g(13)>0$,

$$
H_{n}>2 n^{-1}+(n)_{2}^{-1}+4(n)_{3}^{-1}, \quad n \geqslant 24,
$$

i.e., $D_{n}>4, n \geqslant 24$. The first inequality in (3.12) then follows from Table 2 .

Remark 1. By taking into account more terms in (3.9), it was proved in Stam [5] that $D_{n}=4+O\left(n^{-1}\right)$ and $D_{n+1}<D_{n}, n \geqslant 13$.

Remark 2. For the conditional probability $P\left(A_{1} \mid M \geqslant 2\right)$, we see, using (1.1), (3.10), and (3.12), that

$$
P\left(A_{1} \mid M \geqslant 2\right)=P\left(A_{1}\right) / P(M \geqslant 2)=n^{-1} H_{n}^{-1} \rightarrow \frac{1}{2}, \quad n \rightarrow \infty,
$$

and in the same way,

$$
P\left(A_{n-1} \mid M \geqslant 2\right) \rightarrow \frac{1}{2}
$$

so that the regeneration points concentrate near the end points of $\mathbb{N}_{n}$ as $n \rightarrow \infty$.

## 4. DIVISIBILITY

From (1.6) we have, since $m$ divides $h$ ! if $h \geqslant m$, the congruences

$$
\begin{equation*}
\sum_{j=0}^{m-1} j!c_{n-j} \equiv 0(\bmod m), \quad n \geqslant m \tag{4.1}
\end{equation*}
$$

Let $d_{n}=d_{n}(m)$ be the remainder of $c_{n}$ on division by $m$. Then the recurrence (4.1) also holds for the $d_{i}$ and determines them completely if $d_{1}, \ldots, d_{m-1}$ are given. Since $d_{n} \in\{0, \ldots, m-1\}$, there are at most $m^{m-1}$ possibilities for the sequence $u_{k}=\left(d_{k}, \ldots, d_{k+m-2}\right)$. One of them is $u_{k}=(0, \ldots, 0)$ and this would give $d_{n}=0, n \geqslant 1$, which is excluded because $c_{1}=1$. So we must have $u_{k}=u_{k+p}$ for some $k$ and some minimal $p \leqslant m^{m-1}-1$. Since any $u_{k}$ determines all $d_{n}, n \geqslant 1$, with (4.1) and the coefficients in (4.1) do not depend on $n$, it follows that the sequence $d_{n}, n \geqslant 1$ is periodic with period $p$.

If $m=3$, then (4.1) becomes
$c_{n}+c_{n-1}+2 c_{n-2} \equiv 0$ or $c_{n}+c_{n-1}-c_{n-2} \equiv 0, \bmod 3, n \geqslant 3$,
so that $(-1)^{n} c_{n}$ satisfies the same recurrence mod 3 as the Fibonacci numbers, but the initial conditions are different. We find
$c_{n} \equiv 1,1,0,1,2,2,0,2,1,1, \bmod 3, n=1, \ldots, 10$.
So $p$ has its maximal value 8 .
If $m=4$, then (4.1) gives
$c_{n}+c_{n-1}+2 c_{n-2}+6 c_{n-3} \equiv c_{n}+c_{n-1}+2 c_{n-2}+2 c_{n-3} \equiv 0, \bmod 4, n \geqslant 4$.
Since the $c_{i}$ are odd, this gives
$c_{n}+c_{n-1} \equiv 0, \bmod 4, n \geqslant 4$.
With (1.7) we see that $c_{n} \equiv 1, \bmod 4$, if $n$ is even and $c_{n} \equiv 3$, $\bmod 4$, if $n \geqslant 3$ is odd.

Since the $c_{n}$ are odd, we have $c_{n} \equiv 1, c_{n} \equiv 3, c_{n} \equiv 5$, $\bmod 6$, if $c_{n} \equiv 1$, $c_{n} \equiv 0, \quad c_{n} \equiv 2, \bmod 3$, respectively.

## REGENERATION POINTS IN RANDOM PERMUTATIONS

The Computing Centre of the University of Groningen computed the sequences for $m=5, m=7$, and part of the sequence for $m=11$. For $m=5$ the period is 62, whereas $5^{4}-1=624$. For $m=7$ the period is 684, whereas $7^{6}-1=117649$. For $m=5,7$, and 11 all possible values of $c_{n}$ (mod $m$ ) occur. It is conjectured that this holds for all prime $m$.

We note that for $m$ prime the last two coefficients in (4.1) are 1 and -1 (mod $m$ ) by Wilson's theorem (see Grosswald [2, Ch. 4.3]).

## 5. APPLICATIONS IN COMBINATORIAL PROBABILITY THEORY

If $\sigma$ and $\tau$ are independent stochastic elements of $S_{n}$ and one of them has uniform distribution $P_{n}$, then the points $\mathcal{K} \in \mathbb{N}_{n}$ such that $\sigma\left(\mathbb{N}_{k}\right)=\tau\left(\mathbb{N}_{k}\right)$ have the same joint distribution as the regeneration points of a random permutation, since $\sigma\left(\mathbb{N}_{k}\right)=\tau\left(\mathbb{N}_{k}\right)$ if and only if $\sigma^{-1} \tau\left(\mathbb{N}_{k}\right)=\mathbb{N}_{k}$ and $\sigma^{-1} \tau$ has probability distribution $P_{n}$.

Let $X_{1}, \ldots, X_{n}$ be independent random variables with common continuous distribution function and $Y_{1}, \ldots, Y_{n}$ their increasing order statistics, i.e., the value of $Y_{k}$ is the $k^{\text {th }}$ smallest of the values of $X_{1}, \ldots, X_{k}$. Then the stochastic points $k$ in $\mathbb{N}_{n}$ such that $X_{1}+\cdots+X_{k}=Y_{1}+\ldots+Y_{k}$ have the same joint probability distribution as the regeneration points of a random permutation of $\mathbb{N}_{n}$. We have $Y_{1}<Y_{2}<\cdots<Y_{n}$ with probability 1 and the conditional distribution of $X_{1}, \ldots, X_{n}$ given $Y_{i}=y_{i}, i=1, \ldots, n$ is the same as the distribution of $\sigma\left(y_{1}\right), \ldots, \sigma\left(y_{n}\right)$, where $\sigma$ is a random element of $S_{n}$ (see Rényi [3]). Furthermore, $\sigma\left(y_{1}\right)+\cdots+\sigma\left(y_{k}\right)=y_{1}+\cdots+y_{k}$ if and only if

$$
\sigma\left(\left\{y_{1}, \ldots, y_{k}\right\}\right)=\left\{y_{1}, \ldots, y_{k}\right\}
$$

A deeper application is the following. Let $\sigma$ and $\tau$ be independent random elements of $S_{n}$. Dixon [1] defined $t_{n}$ as the probability that the subgroup < $\tau$, $\sigma)$ of $S_{n}$ generated by $\sigma$ and $\tau$ is transitive, i.e., has $\mathbb{N}_{n}$ as the only orbit. This occurs if and only if $\sigma(A)=\tau(A)=A$ for no proper subset $A$ of $\mathbb{N}_{n}$. Using formal power series, Dixon [1] proved that

$$
\begin{equation*}
\sum_{k=1}^{n}(n-k)!k!k t_{k}=n!n, \quad n \geqslant 1 \tag{5.1}
\end{equation*}
$$

A slightly shorter proof starts from $U_{1}$, the orbit of $\langle\sigma, \tau\rangle$ that contains 1. By the definition of $t_{k}$, we have

$$
P\left(U_{1}=A\right)=(k!)^{2} t_{k}((n-k)!)^{2} /(n!)^{2}
$$

if $A \subset \mathbb{N}_{n}, 1 \in A$, and $|A|=k$. So

$$
P\left(\left|U_{1}\right|=k\right)=\binom{n-1}{k-1} P\left(U_{1}=A\right)=(n-k)!k!k t_{k}(n!n)^{-1}
$$

Equation (5.1) states that these probabilities sum to 1. From (1.6) and (1.7),

$$
\sum_{k=1}^{n}(n-k)!c_{k+1}=\sum_{j=2}^{n+1}(n+1-j)!c_{j}=(n+1)!-n!c_{1}=n!n, \quad n \geqslant 1
$$

Comparing this with (5.1) we see that the sequences $c_{n+1}$ and $n!n t_{n}, n \geqslant 1$, are determined (uniquely) by the same recurrence. So

$$
n!n t_{n}=c_{n+1}, \quad n \geqslant 1
$$

The author was unable to find a direct combinatorial proof of this result.

Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a random sample with replacement from $\mathbb{N}_{m}$, or a random function $\mathbb{N}_{n} \rightarrow \mathbb{N}_{m}$. If $X\left(\mathbb{N}_{k}\right)=\mathbb{N}_{k}$, then $X_{1}, \ldots, X_{k}$ defines a bijection $\mathbb{N}_{k} \rightarrow \mathbb{N}_{k}$. So the probability that $h$ is the first $k$ with $X\left(\mathbb{N}_{k}\right)=\mathbb{N}_{k}$ is

$$
c_{h} m^{n-h} m^{-n}=c_{h} m^{-h}
$$

and the probability that there is at least one such $k$ is

$$
\sum_{n=1}^{m \wedge n} m^{-h} c_{n} .
$$

When the sample is drawn without replacement, so that $n \leqslant m$, the corresponding probability is

$$
\sum_{h=1}^{n} c_{h}(m-h)!/ m!
$$

## REFERENCES

1. J. D. Dixon. "The Probability of Generating the Symmetric Group." Math. Zeitschr. 110 (1969):199-205.
2. E. Grosswald. Topics from the Theory of Numbers. New York: Macmillan, 1966.
3. A. Rényi. "Théorie des éléments saillants d'une suite d'observations." In Colloquium on Combinatorial Methods in Probability Theory. Matematisk Institut Aarhus Universitetet Danmark, 1962.
4. A. M. Rockett. "Sums of the Inverses of Binomial Coefficients." The Fibonacei Quarterly 19, no. 5 (1981):433-37.
5. A. J. Stam. "Asymptotics for Regeneration Points of Random Permutations." Report T.W. 242, Mathematisch Instituut Rijksuniversiteit Groningen.
$\diamond \diamond \diamond \diamond$
