A. J. STAM

Mathematisch Instituut der Rijksuniversiteit, 9700 AV Groningen, Netherlands (Submitted July 1983)

1. INTRODUCTION

In this paper, we study a sequence of positive integers defined by recurrence that have applications in combinatorics and probability theory.

Let σ be a permutation of $\mathbb{N}_n = \{1, \ldots, n\}$, i.e., a bijection $\mathbb{N}_n \to \mathbb{N}_n$. Then $k \in \mathbb{N}_n$ is a regeneration point of σ if $\sigma(\mathbb{N}_k) = \mathbb{N}_k$. Here σ will be a random permutation, i.e., we consider σ to be chosen at random from the set S_n of permutations of \mathbb{N}_n . Equivalently, we define a probability measure P_n on the power set of S_n by $P_n(\{\sigma_0\}) = P_n(\sigma = \sigma_0) = 1/n!$, $\sigma_0 \in S_n$. Expectation with respect to P_n will be denoted by E_n .

Let A_k be the event that k is a regeneration point of the random permutation. Then

$$P_n(A_k) = k! (n - k)! / n! = {\binom{n}{k}}^{-1}, \ k \in \mathbb{N}_n.$$
(1.1)

For the event that k_1, \ldots, k_r , with $1 \le k_1 < \cdots < k_r \le n$, are regeneration points, we have

$$P_n(A_{k_1}A_{k_2} \dots A_{k_r}) = k_1!(k_2 - k_1)! \dots (k_r - k_{r-1})!(n - k_r)!/n!.$$
(1.2)

Let M be the total number of regeneration points in σ . The (factorial) moments of M can be expressed in terms of (1.2), e.g.,

$$E_n M = 1 + Q_n = 1 + \sum_{k=1}^{n-1} P_n (A_k) = 1 + \sum_{k=1}^{n-1} {n \choose k}^{-1}.$$
 (1.3)

Note that n is always a regeneration point.

The theory of regeneration points is dominated by the numbers c_n or c(n), $n = 1, 2, \ldots$, where c_n is the number of elements of S_n that have only one regeneration point, or

$$P_n(M = 1) = c_n/n!, \quad n = 1, 2, \dots$$
 (1.4)

This will be seen in Section 2. Here we mention the relation

$$P_{n}(k) = P_{n}(v = k) = c_{k}(n - k)!/n!, \quad k \in \mathbb{N}_{n},$$
(1.5)

where v is the first regeneration point of the random permutation σ . Since $P_n(1) + \cdots + P_n(n) = 1$, we have

$$\sum_{k=1}^{n} (n-k)! c_k / n! = 1, \quad n \ge 1.$$
(1.6)

The c_n can be computed recursively from (1.6). We find

$$c_1 = c_2 = 1, \quad c_3 = 3, \quad c_4 = 13, \quad c_5 = 71,$$
(1.7)

$$c_6 = 461, \quad c_7 = 3447 = g \times 383.$$

1985]

From (1.6) we see, by induction on n, that the c_n are odd. Divisibility of the c_n is considered in Section 4. By (1.4), the principle of inclusion and exclusion, and by (1.2),

$$C_n/n! = 1 - P(A_1 \cup \dots \cup A_{n-1}) = 1 + \sum_{h=1}^{n-1} (-1)^h T_h = \sum_{h=0}^{n-1} (-1)^h T_h.$$
 (1.8)

Here $T_0 = 1$ and for h > 0,

$$T_{h} = \sum' P_{n} (A_{i_{1}} A_{i_{2}} \dots A_{i_{h}}) = \sum' i_{1}! (i_{2} - i_{1})! \dots (i_{h} - i_{h-1})! (n - i_{h})! / n!$$
$$= \sum'' j_{1}! j_{2}! \dots j_{h+1}! / n!,$$

where Σ' sums over all i_1, \ldots, i_h with $1 \leq i_1 < \cdots < i_h \leq n - 1$ and Σ'' over all $j_1 \geq 1, \ldots, j_{h+1} \geq 1$ with $j_1 + \cdots + j_{h+1} = n$. In (1.8) this gives, by putting h = m - 1.

$$c_n = \sum_{m=1}^n (-1)^{m-1} \sum_{j=1}^n \sum_{i=1}^n j_i! \dots j_m!, \quad n \ge 1.$$
(1.9)

where Σ^* sums over all $j_1 \ge 1$, ..., $j_m \ge 1$ with $j_1 + \cdots + j_m = n$.

In Section 2, an integral equation for the exponential generating function of the c_n will be derived. Section 3 studies the asymptotic behavior of c_n for $n \to \infty$. We have $c_n/n! \to 1$, so M tends to 1 in probability as $n \to \infty$. In Section 5, some applications of the c_n in combinatorial probability theory are given.

2. GENERAL FORMULAS

For the total number *M* of regeneration points we find, by specifying regeneration points only at j_1 , $j_1 + j_2$, ..., $j_1 + \cdots + j_m = n$,

$$P_n(M = m) = \sum^* c(j_1) c(j_2) \cdots c(j_m) / n!, \ m \in \mathbb{N}_n,$$
(2.1)

where Σ^* is the same as in (1.9). The event $\{M \ge m\}$, with $m \ge 2$, means that there are at least m - 1 regeneration points in $\{1, \ldots, n - 1\}$. This gives, in the same way as (2.1),

$$P_{n}(M \ge m) = \sum' c(j_{1}) \cdots c(j_{m-1})(n - j_{1} - \cdots - j_{m-1})!/n!$$

$$= \sum^{*} c(j_{1}) \cdots c(j_{m-1})j_{m}!/n!, \quad m = 2, \dots, n,$$
(2.2)

where Σ' sums over all $j_1 \ge 1$, ..., $j_{m-1} \ge 1$ with $j_1 + \cdots + j_{m-1} \le n-1$ and Σ^* is the same as in (1.9).

For the first regeneration point v we have, with (1.5),

$$E_n v = \sum_{k=1}^n k c_k (n-k)! / n! = \sum_{k=1}^n (n+1) P_n(k) - \sum_{k=1}^n c_k (n+1-k)! / n!$$

$$= (n+1) - (n+1) \sum_{k=1}^n P_{n+1}(k) = (n+1) P_{n+1}(n+1) = c_{n+1} / n!.$$
(2.3)

From the relation $k^2 = (n + 2 - k)(n + 1 - k) + (2n + 3)k - (n + 2)(n + 1)$, we find, in a similar way,

$$E_n v^2 = \{2(n+1)c_{n+1} - c_{n+2}\}/n!.$$
(2.4)

[Feb.

Let

$$C(z) = \sum_{k=1}^{\infty} z^k c_k / k!, |z| < 1.$$

From (1.6),

$$z(1 - z)^{-1} = \sum_{n=1}^{\infty} z^n \sum_{k=1}^{n} c_k (n - k)! / n! = \sum_{k=1}^{\infty} c_k \sum_{n=k}^{\infty} z^n (n - k)! / n!$$
$$= \sum_{k=1}^{\infty} c_k \sum_{j=0}^{\infty} z^{k+j} j! / (k + j)!.$$

With the relation

$$\int_0^z (z - x)^{k-1} (1 - x)^{-1} dx = (k - 1)! \sum_{j=0}^\infty z^{k+j} j! / (k + j)!,$$

to be derived by putting x = zt and expanding $(1 - zt)^{-1}$, we see that

$$z(1 - z)^{-1} = \int_0^z C'(z - x)(1 - x)^{-1} dx,$$

and with partial integration, noting that C(0) = 0,

$$z(1-z)^{-1} = C(z) + \int_0^z (1-x)^{-2} C(z-x) dx, \quad |z| < 1.$$
 (2.6)

The author was unable to find a solution of (2.6) in closed form. The Neumann series solution gives a series of iterated convolutions which, on expansion into powers of z, leads back to (1.9).

3. ASYMPTOTIC BEHAVIOR

We use the notation for falling factorials

$$(n)_n = n!/(n-r)!, r = 0, ..., n, n = 1, 2, ...$$
 (3.1)

First we consider $\mathcal{Q}_n = \mathcal{E}_n M - 1$ given by (1.3). Rockett [4] gave an expression for

$$\Sigma\binom{n}{k}^{-1}$$

but direct use of (1.3) seems better for asymptotic estimates. We have

$$Q_n = 2n^{-1} + 4(n)_2^{-1} + V(n_3)^{-1}, \quad n \ge 6,$$
(3.2)

$$V_n = \sum_{k=3}^{n-2} k! (n-k)! / (n-3)!, \quad n \ge 6.$$
(3.3)

Theorem 1. We have

$V_n \ge 12$, $n \ge 7$;	$V_n \le 156/7, n \ge 6;$	(3.4)
$V_n = 12 + O(n^{-1})$	$, n \rightarrow \infty;$	(3.5)

$$V_{n+1} < V_n, \ n \ge 11.$$
 (3.6)

Proof: The first inequality in (3.4) follows by considering the terms with k = 3 and k = n - 3 in (3.3). The relation (3.5) follows by estimating the

1985]

(2.5)

terms in (3.3) with k = 4, k = n - 4, and $5 \le k \le n - 5$. From (3.3), for $n \ge 6$,

$$V_{n+1} - V_n = 6 + \sum_{k=3}^{n-3} k! (n-k)! \{ (n+1-k)(n-2)^{-1} - 1 \} / (n-3)!$$

= 6 + 4(n-2)^{-1} $V_n - \sum_{k=3}^{n-3} (k+1)! (n-k)! / (n-2)!$
= 6 + 4(n-2)^{-1} $V_n - \sum_{h=4}^{n-2} h! (n+1-h)! / (n-2)!$
= 12 + 4(n-2)^{-1} $V_n - V_{n+1}$, (3.7)

so that $2V_{n+1} = 12 + (n+2)(n-2)^{-1}V_n$. Substituting this into (3.7) shows that $V_{n+1} < V_n$, for $n \ge 6$, if and only if

$$V_n > 12 + 48(n - 6)^{-1}.$$
(3.8)

From the terms in (3.3) with $k \leq 5$ and $k \geq n - 5$,

$$V_n \ge 12 + 48(n-3)^{-1} + 240(n-3)^{-1}(n-4)^{-1}, n \ge 11.$$

Applying this to (3.8) we find (3.6). From (3.6) and direct computation of V_n , $n = 6, \ldots, 11$, we see that max $V_n = 156/7$ is reached for n = 11. Better bounds for larger n may be obtained from (3.6) by computing some V_n .

For the study of c_n , we introduce the following notation, see (1.5) and (3.1):

$$H_n = 1 - c_n/n! = P_n(v \le n - 1) = \sum_{k=1}^{n-1} c_k(n - k)!/n!;$$
(3.9)

$$D_n = (n)_3 \{H_n - 2n^{-1} - (n)_2^{-1}\}, \quad n \ge 3.$$
(3.10)

We need some numerical values of nH_n and D_n . By means of (1.6), (3.9), and (3.10), the values of nH_n and D_n for $3 \le n \le 200$ were computed for the author at the University of Groningen Computing Centre. Part of the values are given in Tables 1 and 2, but the most important numerical result is

$$D_{n+1} \leq D_n, \quad n = 13, \dots, 199.$$
 (3.11)

la	<u> </u>	

п	nH _n	п	nH _n	п	nН _n
1	0.000000	4	1.833333	7	2.212500
2	1.000000	5	2.041667	8	2.227579
3	1.500000	6	2.158333	9	2.220660

Theorem 2. With D_n defined by (3.9) and (3.10),

 $D_n > 4$, $n \ge 9$; $D_n < 6$, $n \ge 20$.

<u>Proof</u>: Since $c_k \leq k!$, we see from (3.9), (1.1), (1.3), (3.2), and (3.4) that $\overline{nH_n} \leq nQ_n < 3, n \geq 9$.

[Feb.

(3.12)

With Table 1, we then extend this to

 $nH_n < 3, \ n \ge 1. \tag{3.13}$

From (3.9), for $n \ge 7$,

 $n!H_n \ge (n-1)!c_1 + (n-2)!c_2 + (n-3)!c_3$ (3.14)

+ 6c(n - 3) + 2c(n - 2) + c(n - 1)

With (1.7) and (3.13), writing $c_k = k!(1 - H_k)$ for $k \ge n - 3$, this gives $H_n \ge 2n^{-1} + 3(n)_3^{-1} - 18(n)_4^{-1}$, $n \ge 7$. (3.15)

From (3.15) we see that $nH_n > 2$, n > 9, and then from Table 1, $nH_n > 2$, $n \ge 5$. (3.16)

From (3.9) for $n \ge 9$, with $c_k \le k!$,

$$n!H_n \leq \left(\sum_{k=1}^{4} + \sum_{k=n-4}^{n-1}\right) c_k(n-k)! + (n-9)5!(n-5)!.$$
(3.17)

With (1.7) and (3.16), writing $c_k = k!(1 - H_k)$ for $k \ge n - 4$, we find $H_n \le 2n^{-1} + (n)_2^{-1} + h(n)(n)_3^{-1}$, $n \ge 9$; (3.18)

$$h(n) = 5 + 25(n - 3)^{-1} + (120(n - 9) - 48)(n - 3)^{-1}(n - 4)^{-1}.$$
 (3.19)

п	D _n	п	D _n	п	D _n
3	-2.000000	10	6.625992	17	6.687779
4	-3.000000	11	7.376414	18	6.406247
5	-2.500000	12	7.702940	19	6.156020
6	-0.833333	13	7.726892	20	5.939237
7	1.375000	14	7.561317	21	5.754089
8	3.558333	15	7.295355	21	5.596962
9	5.356944	16	6.991231	23	5.463713

Table 2

By elementary computation we see that h(n+1) < h(n) for 145n > 1876 or $n \ge 13$ and h(196) < 6, so that h(n) < 6, $n \ge 196$. Hence, $D_n < 6$, $n \ge 196$, by (3.10). The second inequality in (3.12) then follows from (3.11) and Table 2, and it shows that

$$H_n < 2n^{-1} + 2(n)^{-1}, n \ge 20.$$

(3.20)

From (3.9), for $n \ge 9$,

$$n!H_n \ge \left(\sum_{k=1}^4 + \sum_{k=n-4}^{n-1}\right)c_k(n-k)!$$

Here we apply (1.7) for $k \leq 4$ and write $c_k = k!(1 - H_k)$ for $k \geq n - 4$. Application of (3.20) for k = n - 3, n - 4, and of (3.10) with $D_n \leq 6$ then gives

$$H_n > 2n^{-1} + (n)_2^{-1} + 4(n)_3^{-1} + g(n)(n)_4^{-1}, \quad n \ge 24;$$
(3.21)

1985]

$$g(n) = 17 - 72(n - 4)^{-1} - 48(n - 4)^{-1}(n - 5)^{-1}.$$
(3.22)

Since q(n + 1) > q(n), $n \ge 6$, and q(13) > 0,

$$H_n > 2n^{-1} + (n)_2^{-1} + 4(n)_3^{-1}, \quad n \ge 24,$$

i.e., $D_n > 4$, $n \ge 24$. The first inequality in (3.12) then follows from Table 2.

<u>Remark 1</u>. By taking into account more terms in (3.9), it was proved in Stam [5] that $D_n = 4 + O(n^{-1})$ and $D_{n+1} < D_n$, $n \ge 13$.

<u>Remark 2</u>. For the conditional probability $P(A_1 | M \ge 2)$, we see, using (1.1), (3.10), and (3.12), that

$$P(A_1 | M \ge 2) = P(A_1) / P(M \ge 2) = n^{-1} H_n^{-1} \to \frac{1}{2}, \quad n \to \infty,$$

and in the same way,

$$P(A_{n-1} \mid M \ge 2) \rightarrow \frac{1}{2},$$

so that the regeneration points concentrate near the end points of \mathbb{N}_n as $n \to \infty$.

4. DIVISIBILITY

From (1.6) we have, since *m* divides h! if $h \ge m$, the congruences

$$\sum_{j=0}^{m-1} j! c_{n-j} \equiv 0 \pmod{m}, \quad n \ge m.$$
(4.1)

Let $d_n = d_n(m)$ be the remainder of c_n on division by m. Then the recurrence (4.1) also holds for the d_i and determines them completely if d_1, \ldots, d_{m-1} are given. Since $d_n \in \{0, \ldots, m-1\}$, there are at most m^{m-1} possibilities for the sequence $u_k = (d_k, \ldots, d_{k+m-2})$. One of them is $u_k = (0, \ldots, 0)$ and this would give $d_n = 0, n \ge 1$, which is excluded because $c_1 = 1$. So we must have $u_k = u_{k+p}$ for some k and some minimal $p \le m^{m-1} - 1$. Since any u_k determines all $d_n, n \ge 1$, with (4.1) and the coefficients in (4.1) do not depend on n, it follows that the sequence $d_n, n \ge 1$ is periodic with period p.

If m = 3, then (4.1) becomes

 $c_n + c_{n-1} + 2c_{n-2} \equiv 0$ or $c_n + c_{n-1} - c_{n-2} \equiv 0$, mod 3, $n \ge 3$,

so that $(-1)^n c_n$ satisfies the same recurrence mod 3 as the Fibonacci numbers, but the initial conditions are different. We find

 $c_n \equiv 1, 1, 0, 1, 2, 2, 0, 2, 1, 1, \mod 3, n = 1, \dots, 10.$

So p has its maximal value 8.

If m = 4, then (4.1) gives

 $c_n + c_{n-1} + 2c_{n-2} + 6c_{n-3} \equiv c_n + c_{n-1} + 2c_{n-2} + 2c_{n-3} \equiv 0, \text{ mod } 4, n \ge 4.$ Since the c_i are odd, this gives

ince the of are out, this gives

 $c_n + c_{n-1} \equiv 0, \mod 4, n \ge 4.$

With (1.7) we see that $c_n \equiv 1$, mod 4, if *n* is even and $c_n \equiv 3$, mod 4, if $n \ge 3$ is odd.

Since the c_n are odd, we have $c_n \equiv 1$, $c_n \equiv 3$, $c_n \equiv 5$, mod 6, if $c_n \equiv 1$, $c_n \equiv 0$, $c_n \equiv 2$, mod 3, respectively.

[Feb.

The Computing Centre of the University of Groningen computed the sequences for m = 5, m = 7, and part of the sequence for m = 11. For m = 5 the period is 62, whereas $5^4 - 1 = 624$. For m = 7 the period is 684, whereas $7^6 - 1 = 117649$. For m = 5, 7, and 11 all possible values of $c_n \pmod{m}$ occur. It is conjectured that this holds for all prime m.

We note that for m prime the last two coefficients in (4.1) are 1 and -1 (mod m) by Wilson's theorem (see Grosswald [2, Ch. 4.3]).

5. APPLICATIONS IN COMBINATORIAL PROBABILITY THEORY

If σ and τ are independent stochastic elements of S_n and one of them has uniform distribution P_n , then the points $k \in \mathbb{N}_n$ such that $\sigma(\mathbb{N}_k) = \tau(\mathbb{N}_k)$ have the same joint distribution as the regeneration points of a random permutation, since $\sigma(\mathbb{N}_k) = \tau(\mathbb{N}_k)$ if and only if $\sigma^{-1}\tau(\mathbb{N}_k) = \mathbb{N}_k$ and $\sigma^{-1}\tau$ has probability distribution P_n .

Let X_1, \ldots, X_n be independent random variables with common continuous distribution function and Y_1, \ldots, Y_n their increasing order statistics, i.e., the value of Y_k is the k^{th} smallest of the values of X_1, \ldots, X_k . Then the stochastic points k in \mathbb{N}_n such that $X_1 + \cdots + X_k = Y_1 + \cdots + Y_k$ have the same joint probability distribution as the regeneration points of a random permutation of \mathbb{N}_n . We have $Y_1 < Y_2 < \cdots < Y_n$ with probability 1 and the conditional distribution of X_1, \ldots, X_n given $Y_i = y_i$, $i = 1, \ldots, n$ is the same as the distribution of $\sigma(y_1), \ldots, \sigma(y_n)$, where σ is a random element of S_n (see Rényi [3]). Furthermore, $\sigma(y_1) + \cdots + \sigma(y_k) = y_1 + \cdots + y_k$ if and only if

 $\sigma(\{y_1, \ldots, y_k\}) = \{y_1, \ldots, y_k\}.$

A deeper application is the following. Let σ and τ be independent random elements of S_n . Dixon [1] defined t_n as the probability that the subgroup $\langle \tau, \sigma \rangle$ of S_n generated by σ and τ is transitive, i.e., has \mathbb{N}_n as the only orbit. This occurs if and only if $\sigma(A) = \tau(A) = A$ for no proper subset A of \mathbb{N}_n . Using formal power series, Dixon [1] proved that

$$\sum_{k=1}^{n} (n-k)!k!kt_{k} = n!n, \quad n \ge 1.$$
(5.1)

A slightly shorter proof starts from U_1 , the orbit of $\langle \sigma, \tau \rangle$ that contains 1. By the definition of t_k , we have

$$P(U_1 = A) = (k!)^2 t_{\nu} ((n - k)!)^2 / (n!)^2,$$

if $A \subset \mathbb{N}_n$, $1 \in A$, and |A| = k. So

$$P(|U_1| = k) = \binom{n-1}{k-1} P(U_1 = A) = (n-k)!k!kt_k(n!n)^{-1}.$$

Equation (5.1) states that these probabilities sum to 1. From (1.6) and (1.7),

$$\sum_{k=1}^{n} (n-k)! c_{k+1} = \sum_{j=2}^{n+1} (n+1-j)! c_j = (n+1)! - n! c_1 = n! n, \quad n \ge 1.$$

Comparing this with (5.1) we see that the sequences c_{n+1} and $n!nt_n$, $n \ge 1$, are determined (uniquely) by the same recurrence. So

 $n!nt_n = c_{n+1}, \quad n \ge 1.$

The author was unable to find a direct combinatorial proof of this result.

1985]

Let $X = (X_1, \ldots, X_n)$ be a random sample with replacement from \mathbb{N}_m , or a random function $\mathbb{N}_n \to \mathbb{N}_m$. If $X(\mathbb{N}_k) = \mathbb{N}_k$, then X_1, \ldots, X_k defines a bijection $\mathbb{N}_k \to \mathbb{N}_k$. So the probability that h is the first k with $X(\mathbb{N}_k) = \mathbb{N}_k$ is

 $c_h m^{n-h} m^{-n} = c_h m^{-h}$

and the probability that there is at least one such k is

$$\sum_{h=1}^{m \wedge n} m^{-h} c_h.$$

When the sample is drawn without replacement, so that $n \leq m$, the corresponding probability is

$$\sum_{h=1}^{n} c_{h}(m - h)!/m!.$$

REFERENCES

- 1. J. D. Dixon. "The Probability of Generating the Symmetric Group." *Math. Zeitschr.* 110 (1969):199-205.
- 2. E. Grosswald. Topics from the Theory of Numbers. New York: Macmillan, 1966.
- 3. A. Rényi. "Théorie des éléments saillants d'une suite d'observations." In *Colloquium on Combinatorial Methods in Probability Theory*. Matematisk Institut Aarhus Universitetet Danmark, 1962.
- 4. A. M. Rockett. "Sums of the Inverses of Binomial Coefficients." The Fibonacci Quarterly 19, no. 5 (1981):433-37.
- 5. A. J. Stam. "Asymptotics for Regeneration Points of Random Permutations." Report T.W. 242, Mathematisch Instituut Rijksuniversiteit Groningen.

[Feb.