GUESSING EXACT SOLUTIONS

CHARLES R. WALL
Trident Technical College, Charleston, SC 29411
(Submitted July 1983)

A recent problem [1] in this journal provides a nice illustration of a technique for guessing exact solutions of polynomial equations from approximate solutions. The technique depends on nothing more complicated than the familiar fact that if $a x^{2}+b x+c=0$ has roots s and t, then $s+t=-b / a$ and $s t=c / a$.

Problem H-335 asked for exact solutions of the equation

$$
\begin{equation*}
x^{5}-5 x^{3}+5 x-1=0 \tag{1}
\end{equation*}
$$

One of the solutions is $x=1$, and dividing (1) by $x-1$ yields

$$
\begin{equation*}
x^{4}+x^{3}-4 x^{2}-4 x+1=0 \tag{2}
\end{equation*}
$$

Using bracketing techniques and a calculator, it is relatively easy to see that (2) has rounded solutions: $r_{1}=-1.8271, r_{2}=-1.3383, r_{3}=0.2091, r_{4}=1.9563$.

Now we seek pairs of these solutions that have recognizable sums and products. Fibonacci fans are certainly familiar with the number $\alpha=(1+\sqrt{5}) / 2=$ 1.6180... . Upon noting that $r_{2}+r_{4} \approx 0.618 \approx \alpha^{-1}$ and $r_{2} r_{4} \approx-2.618 \approx-\alpha^{2}$, we suspect that r_{2} and r_{4} are solutions of

$$
\begin{equation*}
x^{2}-\alpha^{-1} x-\alpha^{2}=0 \tag{3}
\end{equation*}
$$

Long division, using familiar properties of powers of α, confirms that suspicion as fact, since

$$
x^{4}+x^{3}-4 x^{2}-4 x+1=\left(x^{2}-\alpha^{-1} x-\alpha^{2}\right)\left(x^{2}+\alpha x-\alpha^{-2}\right)
$$

Then we can verify that r_{2} and r_{4} are indeed solutions of (3), namely,

$$
x=\frac{\alpha^{-1} \pm \sqrt{\alpha^{-2}+4 \alpha^{2}}}{2}=\frac{\alpha-1 \pm \sqrt{6+3 \alpha}}{2}=\frac{-1+\sqrt{5} \pm \sqrt{30+6 \sqrt{5}}}{4} .
$$

Also, r_{1} and r_{3} are solutions of $x^{2}+\alpha x-\alpha^{-2}=0$, namely,

$$
x=\frac{-\alpha \pm \sqrt{\alpha^{2}+4 \alpha^{-2}}}{2}=\frac{-\alpha \pm \sqrt{9-3 \alpha}}{2}=\frac{-1-\sqrt{5} \pm \sqrt{30-6 \sqrt{5}}}{4}
$$

(Incidentally, the published solution was incorrect in that r_{1} and r_{3} were each off by 0.5, because of an incorrect sign in the numerator.)

REFERENCE

1. Paul Bruckman. Advanced Problem H-335. The Fibonacci Quarterly 20, no. 1 (1982): 93.

$\bullet \diamond \diamond \diamond$

