A PATH COUNTING PROBLEM IN DIGRAPHS

KAREL ZIKAN and EDWARD SCHMEICHEL San Jose State University, San Jose, CA 95192 (Submitted June 1983)

1. INTRODUCTION

In this paper, we consider only directed graphs without loops or multiple edges. Our terminology and notation will be standard except as noted. A good reference for any undefined terms is [1].

Our main goal is to determine the maximum possible number of directed paths between a pair of vertices in an acyclic digraph with m edges (and any number of vertices). Denoting this maximum possible number by $\mathbb{N}(m)$, we will establish that

$$N(m) = \begin{cases} F_{(m+1)/2} & \text{for } m \text{ odd} \\ 1 & \text{for } m = 2 \\ 2F_{(m/2)-1} & \text{for } m \ge 4 \text{ and even} \end{cases}$$

where F satisfies the recurrence relation

$$F_k = F_{k-1} + F_{k-2}, F_1 = 1, F_2 = 2.$$

The actual proof of this formula will be preceded by a sequence of five easy lemmas.

We then conclude with a brief discussion of the following related question: Given a positive integer k, what is the least number of edges in an acyclic digraph having *exactly* k directed paths between a pair of vertices.

2. PROOFS OF THE LEMMAS AND MAIN RESULT

Lemma 1

Let *D* be an acyclic digraph. Then *D* contains vertices α and z such that indegree α = outdegree z = 0. (We call α and z, respectively, a source and a sink of *D*.)

<u>Proof</u>: Let $x \in V(D)$. Consider a longest path directed away from x, say from x to z. Then outdegree z = 0 (since any edge leaving z would yield either a longer directed path away from x or a directed cycle in D).

The proof that indegree a = 0 for some $a \in V(D)$ is entirely analogous.

Lemma 2

Let D be an acyclic digraph. Then the vertices of D can be ordered, say 1, 2, ..., n, such that every edge in D is of the form (i, j), where i < j.

<u>Proof</u>: We proceed by induction on n = |V(D)|. The result is trivially true for n = 2. For the induction step, choose any $z \in V(D)$ with outdegree z = 0 (one exists by Lemma 1), and consider the digraph D - z. By the induction hypothesis, the vertices of D - z can be ordered, say 1, 2, ..., n - 1,

1985]

in the manner described. If we let z be the n^{th} vertex, we have the desired ordering of V(D).

In what follows, we assume D is an acyclic digraph with vertices ordered 1, 2, ..., n such that every edge of D is of the form (i, j), where i < j.

For any $x \in V(D)$, let $p_D(x)$ denote the number of directed paths from 1 to x in D. [When D is clear from context, we will use just p(x) for this number.]

Lemma 3

Suppose D has a set of vertices $S = \{i < \dots < j < k\}$, with $1 < i < k \leq n$, which induces a tournament (i.e., a digraph with every pair of vertices joined by precisely one edge). Then

$$p(k) \ge p(i) + \cdots + p(j).$$

<u>Proof</u>: For each $x \in S$, let P(x) denote the set of directed paths from 1 to x. x. If $x \neq k$, let P'(x) denote the set of directed paths from 1 to k obtained by taking a path from 1 to x together with the edges (x, k). Then, clearly,

$$P'(i) \cup \cdots \cup P'(j) \subset P(k),$$

and the sets on the left side are disjoint. Since

|P'(x)| = |P(x)| = p(x), it follows at once that

$$p(i) + \cdots + p(j) \leq p(k)$$
.

Let N(m) denote the maximum possible number of directed paths between two vertices of an acyclic digraph with m edges. Certainly N(m) is a nondecreasing function of m. Let us call an acyclic digraph on m edges having precisely N(m) directed paths between some pair of vertices a *path maximum m-graph*. It is easily seen that there will be a path maximum m-graph D with the vertices ordered as in Lemma 2 such that 1 and n are joined by precisely N(m) directed paths, and 1 (resp., n) is the unique source (resp., sink) in D. We will assume this property for the path maximum m-graphs we consider in what follows.

Lemma 4

There exists a path maximum m-graph D in which

 $\{x \in V(D) \mid (x, n) \in E(D)\}$

(i.e., the predecessors of n in D) induce a tournament.

<u>Proof</u>: Otherwise, let i, j be two predecessors of n (with say i < j) such that $(i, j) \notin E(D)$. Form the digraph

$$D' = D - (i, n) + (i, j).$$

To each directed path in D from 1 to n containing the edge (i, n) there corresponds uniquely a directly path in D' from 1 to n containing the edges (i, j) and (j, n). Hence, $p_D(n) \ge p_D(n)$, and so D' is also a path maximum m-graph in which n has one less predecessor than in D. We simply iterate this procedure until we obtain a path maximum m-graph with the desired properties.

Lemma 5

4

If $m \ge 3$, there exists a path maximum *m*-graph in which *n* has indegree 2.

[Feb.

A PATH COUNTING PROBLEM IN DIGRAPHS

<u>Proof</u>: Let D be a path maximum m-graph in which the predecessors of n (ordered say $1 < \cdots < j < k$) induce a tournament. By Lemma 3,

$$p(k) \ge p(i) + \cdots + p(j).$$

Hence,

$$2p(k) \ge p(i) + \cdots + p(j) + p(k) = p(n) = N(m).$$

If indegree $n \ge 3$, we can construct a new acyclic digraph D' with m edges, as shown in Figure 1. Note that

$$p_{D'}(n') = 2p(k) \ge N(m),$$

and hence D' is also a path maximum *m*-graph. But indegree $_{D'}n' = 2$, and the proof is complete.

(indegree n) – 1 edges

Figure 1. The Digraph D'

We now state and prove our main result.

Theorem

Let *m* be a positive inteter. Then

$$N(m) = \begin{cases} F_{(m+1)/2} & \text{for } m \text{ odd} \\ 1 & \text{for } m = 2 \\ 2F_{(m/2)-1} & \text{for } m \ge 4 \text{ and even} \end{cases}$$

where F_k is the Fibonacci number satisfying $F_k = F_{k-1} + F_{k-2}$, $F_1 = 1$, $F_2 = 2$.

Proof: It is readily verified that

N(1) = N(2) = 1, N(3) = N(4) = 2, N(5) = 3, N(6) = 4,

and so the formula holds for $m \ge 6$. We thus proceed by induction on $m \ge 7$. Since the digraphs in Figure 2 contain *m* edges, and have as many dipaths from 1 to *n* as the number specified in the formula, it suffices to show the numbers in the formula are upper bounds for N(m).

By Lemma 5 there is a path maximum *m*-graph *D* in which the indegree of *n* is 2. Let x, y denote the predecessors of *n* in *D*, with say x < y. We then have precisely three possibilities:

(i) $(x, y) \notin E(D)$ (Using the construction in the proof of Lemma 4, we could obtain a path maximum *m*-graph in which *n* has indegree 1.)

1985]

(ii) $(x, y) \in E(D)$, and x is the only predecessor of y. (iii) $(x, y) \in E(D)$, and x is not the only predecessor of y.

Figure 2. Path Maximum *m*-Graphs

By considering the maximum possible number of dipaths from the source to x and y in cases (i), (ii), and (iii), respectively, we get

$$N(m) \leq \max\{N(m-1), 2N(m-3), N(m-2) + N(m-4)\}.$$

Using the induction hypothesis, and the fact that $m \ge 7$, we obtain

$$N(m) \leq \begin{cases} \max\{2F_{(m-3)/2}, 4F_{(m-5)/2}, F_{(m-1)/2} + F_{(m-3)/2}\} = F_{(m+1)/2}, \text{ if } m \text{ odd,} \\ \max\{F_{(m/2)}, 2F_{(m/2)-1}, 2F_{(m/2)-2} + 2F_{(m/2)-3}\} = 2F_{(m/2)-1}, \text{ if } m \text{ even.} \end{cases}$$

The inductive step, and hence the proof of the theorem, are now complete.■

3. A RELATED PROBLEM

The authors have also considered the following problem: Given a positive integer k, what is the least number of edges in an acyclic digraph having *exactly* k paths between some pair of vertices? Noting the N(m) is nondecreasing in m, it seems reasonable to conjecture that if $N(m - 1) < k \leq N(m)$, then m is the minimum number of edges required. This conjecture is indeed true for $k \leq 32$. However, N(14) < 33 < N(15), and we have shown that at least 16 edges are needed in any digraph having exactly 33 directed paths between a pair of vertices. Although it appears that a complete solution to this problem may be very difficult, we have the following conjecture to offer:

<u>Conjecture</u>: Let k_n be the smallest integer such that $N(m - 1) < k_n < N(m)$, but at least m + n edges are needed in any digraph with precisely k_n directed paths between a pair of vertices. Then k_n satisfies the recurrence relation $k_n = 34k_{n-1} + 21$, $k_1 = 33$.

REFERENCE

1. M. Behzad, G. Chartrand, & L. Lesniak-Foster. *Graphs and Digraphs*. Boston, Mass.: Prindle, Weber and Schmidt, 1979.

***\$**

[Feb.

6