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1. INTRODUCTION

A standard arithmetical trick for school children is to ask them to choose two
positive integers, to extend this to a sequence of 10 numbers by adding any two
to obtain the next in the Fibonacci manner, and then to add up the numbers in
the sequence. When the exercise is complete the teacher, having unobtrusively
noted the seventh number in each student's sequence while checking around the
room to see that each is proceeding properly, can mystify the students by an-
nouncing the sum each has achieved. Given that the students did the arithmetic
correctly, the sum is just 11 times the seventh number in their original se-
quence. If, for example, a student chooses 5 and 1, his sequence is

5, 1, 6, 7, 13, 20, 33, 53, 86, 139

and the sum is 363 = 11 - 33.
Of course, as the reader will expect, this is just a special case of more
general results which we now examine.

2. SOME GENERAL RESULTS

Let F, and I, denote, respectively, the nt! Fibonacci and Lucas numbers so that

Fy =0, F, =1, F,,, = F, + F,_, for n > 1,

Ly=2,L,=1,L,., =L, + L, , for n > 1.
Also, define sequences H, and K, for integers a and b by

H]_:a: H2=bs Hn+2=Hn+1+Hn forn?l,
and
Ky

Then the following theorem holds.

-a + 2b, K, = 2a+ b, K, p = K,,, + K, for n 2 1.

Theorem 1: For n 2 1,

4n-2 4n

(1) D Hy = Loy 1Honsrs ,2: Hy = FypKoppias
=1 =1
fn-2 4n

(i1) iz% Ki = Lop-1Konsrs iz% Ky = SFoulypyss-

The arithmetical trick described above derives from the first formula of
part (i) of the theorem with n = 3. For n = 4, it would say that the sum of
the first 14 integers in the sequence is divisible by the ninth number in the
sequence, and so on.
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The proof of Theorem 1 depends on the following well-known results which we
state for completeness.

Lemma 1: For n > 1,
H = aF

+ bF and K, = alL

n n-2 n-1 n n-2 n-1
Lemma 2: For n > 1,

I n

YF, =F, ., -1 and XL, =1IL,,~ 3.

i=1 =1

Lemma 3: For integers r and s,

) E;LT+S S even,
(1) Foy 2s © F, =

LsF,, , & odd,

N 5F F,., s 8 even,
(i1) L, 2s © L, =

Lelippg 8 odd,

o LSFP+S s even,
(iii) Frop,s t B =

F,L,,, & odd,

Lglpy g s even,
(iv) Lr+ 2s + Lr =

5F,Fn,, & odd.

Note that Lemmas 1 and 2 are easily proved by induction and that Lemma 3
follows from Binet's formulas. Alternatively, Lemmas 1 and 2 follow from (7)
and (6), page 456 of [2] for suitable choices of p and g, and Lemma 3 follows
from (5)-(12), page 115 of [1] by setting r = n - k and ¢ = k. 1In fact, Theo-
rem 1 can also be deduced from (6), page 456 of [2] and Lemma 3. However, for
ease of reading, we give an independent proof.

Proof of Theorem 1: Since all the arguments are similar, we prove only part
(iv). By Lemmas 1, 2, and 3,

4n 4n
YK 2 (aL,_, + bL

t=1 =1 4n 4n

=al_, +aly+aX L, , +bL, +b2 L,
i=3 i=2

=-a+ 2a + a(L,, - 3) + 2b + b(L
= a(L,, - L, + b(L - L)
- 2
- 5aF2n + 5bFZnF2n+1
= 5F, (aF,, + bF

= 5F,,Hyn40

.

- 3)

hn+1

hn+1

2n+ 1)

as claimed.
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Setting a=b=1, we obtain the following immediate corollary to Theorem 1.

Corollary 1: For n 2 1,

4 - 2 4n

(1) E Fy = Lyy 1Fonsas Z Fo= Foulonyas
=1 =1
4n- 2 4n

(ii) iz_v.ll L= Loy alonsrs 7,';1 Ly = S ntnn

Now Lemma 1 and Theorem 1 suggest a further generalization. Define the
sequences P, §, R, S, T, U, V, and W for n 2 1 by

p, =af,_, +bLn-—l’ anaLn—2+bFn—l’
R, =al,_, + SbFn_l, S, = 5al,_, + bFn_l,
T, =af,_, +5bL,_,, U,=25aF, , + DbL,_,,
V, =aLl, , + 5°bF _., W, =5%F, , + bL,_,.
Then the following results hold.
Theorem 2: For n > 1,
4bn- 2 4n
(1) Z P, =Ly 1Prnsrs E Py = FyBypins
=1 =1
4n-2 4n
(ii) 2 Q; = Loy 1820415 E Q; = FoUsuyns
=1 =1
4n- 2 4n
(1i1) L Ry = Ly 1Rppins Z Ry = 5Fy,Pypy0s
=1 =1
4tn- 2 4n
(1v) X 8; = Ly 155m41> E 55 = FonWonszs
=1 =1
4tn-2 4n
(V) Z Ti = LZn—lT2n+l’ Z Ti = F2nV2n+2’
=1 =1
4bn- 2 4n
(vi) ,El Uy = Lyy 1Uspins E U; = 5F2nQ2n+2’
i= i=
4n - 2 4n
(vii) 'El Vi = L2n-1V2n+1’ 'Zl vy = 5F2nT2n+2’
= =
4n -2 4n
(viii) E Wy = Loy 1Wonsrs ,lei = 5F,, 55,40
=1 =

We omit the proof, since it is similar to that of Theorem 1.

3. MORE GENERAL RESULTS

We may generalize the results of Section 2 as follows. Define the sequences
(Fotuso = (Fu@ 50 and {8,150 = {2,(@) )50 by
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f0=0’ f1=1’ n+1=afn+fn-—l
o =2, £, =a, &

n+1 aly, + 8, 1>

where a = a(x) is an arbitrary function of x. Then it is easily shown, as with
the Fibonacci and Lucas sequences, that

pn - gn
fo = F7/— (€]
Va2 + 4
and
L, =p"+ 0" (2)
for all n where
_a+Vva® + 4 _a-Vva® + 4
p=——7 and 0o = — -
Also,
n Fasr1 ¥ - 1
T (3)
=1
n 2 +1 + an -a- 2
X =— - ; (4)
1=1
fo,=1 and L_, = -a. (5

In addition, we have the following generalization of Lemma 3.

Lemma 4: For integers r and s,

en
{fs£r+s & even,

Lsfrss s odd,

(1) fr+2s - fr

(a> + 8OF, 1., s even,
(11) Rpy26 = Ar =
Lslpts s odd,

Lefpss s even,
WD f + 5y =
fs r+s s odd,

. 1.,+s S even,
(lv) Q‘r+23 + Q'l" =

(a? + &) fofry s € odd.

Equations (1), (2), (3), and (4) can all be proved by induction, and Lemma 4
follows as before from the Binet formulas (1) and (2). Alternatively, (1) and
(2) are essentially special cases of (53) and (54), page 119 of [1] and Lemma 4
is, in the same sense, a special case of (56)-(63) of [1].
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If we now define the sequences % and k by

hl = g, h2 =d, hn+1 = ah, + hn_l (6)
and

k, = -ac + 2d, k, = ad + 2¢, k,,, = ak, + K,_,, (@)

where ¢ = ¢(x) and d = d(x) are also arbitrary functions of x, then it can be
shown by induction that

(
h, = cfn_z + dfn—l (8)
and
k,=cl, ,+d, _, 9

for all n. Finally, by analogy with Section 2, we define the sequences p, ¢,
r, 8, t, u, v, and w by

]

fpon ¥ Ay
ek, _, +df, |
=cl,_, + (a® + BAf, 1
s, = (a®> + &)er, _, + df, _,
t, =cfy_, + (@ + &)d,_
U, = (@® + &)ef, , +dv _,
Vp =y, _, ¥ (@® + 4)2df,
w, = (a® + &) %ef, , + di,

N

R QT
R
]

1

-1

for all n. Then, as before, we have the following result that generalizes both
Theorem 1 and Theorem 2.

Theorem 3: For n > 1,

) LN (N P 4n FonCkyr T k,0
(1) h’b = s 2 h7, = >
= a i=1 a
2
.. nz? Z2n—l(k2n_l + an) & (a + 4)f2n(th+1 + th)
(i1) X k; = > Lk, = :
i= a i=1 a
PP nz2 SLZn—l(pZn—l + pzn) 4n on(rer-l + r)271)
(iii) 3 p, = Z s Sp.o= o s
i=1 i=1 "
. an-2 Rgn-1Wonoy 45,0 4n FonWopin T %y,)
(iv) 7_'Z=:1 q; = 2 s iz=: q; = 2 >
2
() [mizr = 'Q'Zn—l(PZn-l + r2271) 427117 = (@ + 4>f271(p2n+1 + pZn)
Voo T a ' P a ’
- 2 (s + s.) . (w +w, )
bn=2 - _ an
(Vi) Z Si - 2n-1 2n-1 2n , Z S.L- - 2n 2n+1 2n ,
i=1 a i=1 “
bn-2 2 (t + t ) 4n Fon (¥ + v )
2n-1 2n-1 2n 2n 2n+1 2n
vii t, = ) t, = >
( ) igl 7 a iz=:l T a

1985] 225



ON A FIBONACC!I ARITHMETICAL TRICK

2
s an -2 'QZn—l(MZn—l + uZn) in (a® + 4)f2” (q2”+1 + qzn)
(viii) Y u; = > DU = ’
. a B a
1= i=1
2
(. ) lm—ZU _ 2n—1(02n~1 + vzn) z‘zri _— (a + 4)fzn(th+1 + th)
. P a ’ Pl a '
2
( ) [mizw J1271--1(1‘)271—1 + w2n) %w (a + 4)'70271 (32n+l + 327:)
X .= . =
i=1 ° a ’ i=1 " a

Proof: The proofs of these formulas are all similar to those of Theorem 1
and require the use of (3), (4), and Lemma 4 in the obvious places. To illus-
trate, we prove the first result in (i). Since f'o = 0, we have that

4n-2 4n- 2 4n-2 4tn- 2
'El hi = 'Zl (cfi-z + dfi_l) = cf-l + O_Z fi—z + d,zzf-_l
= = = 1=
fkn—3+f'-m—lo_l fun-z"'fun—a"l
=c+e + d
a a
¢(Fyp-g t Fupoy T a -1 +d(fy, 3+ Fiypoyg - D
= a
c(fun-g = F1 ¥ fupoy ¥ F2) ALy o0 = Fo + Fupos = F1)
- a
_ e(fon-2%om-1 F Fon-alon-1) + Ao 18001 + Fop2f9n-1)
B a
Lop-rl(efoy n + dfyy 1) + (efy, 3 + dfy, _5) ]
- a

Q’Zn—l(th + th—l)
2 .
The formulas in Theorem 3 are still neat and tidy though not so simple as
those in Theorems 1 and 2. The difficulty is that H,, + H,, ,=H,,  , in Theo-

rem 1, whereas here we require th + ath_l = h2n+1. Of course, if a =1, the
results coincide.

4. STILL MORE GENERAL RESULTS

It is natural to ask if the results can be g_eneralizecl even further. _Indeed,
it would be reasonable to define sequences {fn}n>0 = {f,@}i>0 and {Ln},50 =
{2, },50 by

Fo=0,F1 =1, fiu = afn +bfn—1

and

L9 =25 &y =a, %, =al, + bY,_

1’
where a = a(x) and b = b(x) are arbitrary functions of x. Setting

— _a+Va? + 4p

p="——73—— ad 0§="—7—),
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we obtain as before (see [1], p. 119),

“n

p” - ¢”

fy = — (18)
* va? + 4b
T, =5" -5, (19)
L f;+1 + bf; -1
ig;l i a+b-1 7 (20)
no_ En+1+b§n—a—2b
7_';127: = a + b -1 ’ (21)
and the following lemma.
Lemma 5: For integers r and s,
£ s even
. = 5= s’r+s 4
(l) fr+25_bfr={__
sfr+s § odd,
_ _ (a® + 4b)f;f;+s s even,
(A1) R, - PR, = { o
Lol pys s odd,
— s = E3 _yz+s S even,
(iidi) f;+2s + Db f, = L
2., s odd,
_ _ ESEP+S s even,
(1v) U, + D8, = o
(a* + 4b)f,f,,, & odd.
Continuing, if we define k; and k; by
hy =c¢, h, =d, h,,, =ah, + Dbh, _, (22)
and _ _ — — —
k, = 2d - ac, k, = ad + 2be, k,,, = ak, + bk,_, (23)
where ¢ = ¢(x) and d = d(x) as above, we prove as before that
h, = bef,_, + df, _, (24)
and _ _ _
n = bet o +de . (25)

If, by analogy with (10)-(17), we now define sequences ﬁn, 4, Pn> S, Tps Uy,
v,, and wy, by

p, = bcf;_z + din_l, (26)
G, =bel,_, +df,_;» (27)
r, = bcfn_2 + (a? + éb)df;_l, (28)
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5, = (a® + 4b)ber,_, + df, ., (29)

Ty = bef,_, + (a® + 4b)dL ., (30)

u, = (a® + 4bYbef, , + dL ., (31)

D, =bel _, + (a® + 4b) df, _, (32)
and _ _

w, = (a® + 4b)2bcf;_2 +d ., (33)

we can then prove the following theorems that contain all the preceding results
as special cases. Of course, the formulas are less elegant, but they still
exhibit a nice symmetry.

Theorem 4: For n > 1,

L m-2 = 1 - p2n-1 ~ EZn—l(f;n + bfgn—l)
(1) igl f,b + T+ b _—) = — b — ,
.. = 1 - p2» fzn (Ez,ﬁ.l + bR’Zn)
(ii) 1;% e s i — b - )
bn= 2 2n-1 (L, + b, )
3 (a +2b)(1 - b ) _ Lon-1Fsy, om-1
(1D iza_ bi - a+b-1 a2+ b -1 >
(iv) 2: Q _(a+20)Q - bzn) (a® + 4b>f2n(f2n+1 + bfgn
i=1 a+b-1 a+ b -1

The proof is similar to that of Theorem 5 and will be omitted.

We note that Theorem 4 specializes to Corollary 1 if we set

a=b=c=d-=1.

Theorem 5: Let

e(2b + a2 - a) + d2 - a)

_c+d- ac
- S
C = c(l - a) + d(2 - a)
B a+b-1 ’
E_c(2b+a - a) + d(a* +4b)
- a+b-1
¢ = e(l - a) + da® + 4b)(2 - a)
a a+b -1
I_e(2b+a - a) + d(a* +4b)
B a+b-1

Then, for n 2 1,

a+b -1 ?
e(2b+a® - a) +d
a+b-1 ’
cla? + 4b)(2b + a% - a) + d
a+ b -1 ?
e(l - a)(a? + 4b) + d(2 - a)
a+ b -1
e(l - a)(a? + 4b)% + d(2 - a)
a+b-1 :

an- 2 Ropo1(Bgy + Doy 1)

1) X hy+ A - DY =
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(i1)

(iii)

(iv)

)

(vi)

(vii)

(viii)
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fzrl (?2n+1 + szn)

2n —
b7 = + -1 ’
b2n—1 _ E2n—1(z2n + szn-l)
) = a + b -1 3
oy (a® + Ab)fzﬁ(22n+1 + Dh,,)
) = a+ b -1
2n-1 _EZn-l @Zn + bZ—QZn—l)
b ) - a + b _ 1 s
bZn) _ on 62n+1 + b_fler)
- a+b-1 ’
2n-1 f’271—1(5271 +b§2n-1)
2n _ fzn (a2n+1 + ba?.n)
P N R
on-1 _Q'Zn—lgzrz +b;2n—l)
b ) - a + b _ 1 s
2n — (az + 4b)f2n (52n+1 + bz_92n)
b7 = a+b-1
on-1 _ -’Q-Zn—l(EZn + b§2n——1)
b ) = a+b-1 ’
b2n _ j52 (Z}Zn+1 + bBZn)
) = a+bh-1 ’
P L, (&, +Dt, )
) = a+b -1 >
on _ fzn (52n+1 + b§2n)
b7") = a+b -1 ’
bzn—l _ 'Q'Zn—l(azn + bﬁZn-—l)
) = a+b -1 ’
»27) (@® + 4D) F,, (@gney + Payp)

a+b-1

3

3

3
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4n- 2 L. (o, +bv_ )

. — 2n-1y _ _2n-1" 2n 2n -1
(lX) l? Ui+I(1—b ) = a+ b -1 >
in (a®> + 4b)f. (F, + b, )
— _ on - 2n 2n+1 2n
:L:‘IUL'*'I(I b*™) PR ]
bn-2 % (w, + bw )
— 2n-1y _ 2n-1""2n 2n-1
(x) ig;lwi +J(1 - b = R — ,
mo S ey - (a® + 4b)f, (5,  +Ds,)
i=1wi N a+b-1

Proof: Again, since the proofs are similar, we prove only the first part of

(ii). Since f_, = 1/b, f; =0, and 2, = 2, we have from (20), (21), and Lemma
5, that

bn-2 _ 4n- 2 _ _ 1 4n-2 _ 4n-2_
TBc T el + i) - be(p) + be & Fry 424+ d X 1,
7=

i=1 i=1 i=1

be(Fup- st Bfipoy = D d®,, ., + By, _5 - a - 2b)
a+b -1 +2d + a+b -1

=c+

ac - ¢ + bef,, _, + b%ef,, ., ad-2d+di,,_, + dbl

a+b-1 * a+b-1

Lbn -3

be(Fiyy -y = DP72F) + bPe(F, ., + D 73F,)
a+b-1

, = bTT) + db(L,,
a+b-1

o -3 +p2n-2/q'l)

+

cela-1) +da-2) + b lo(1l - a) + bPYA(2 - a)
a+b -1

bcf;n-ZEZn—l + bch;n-a Roport d L5, o+ db§2n~212n-l
a+b -1
[e(a ~ 1) + d(a - 2)][1 - p™*71]
a+b-1
E2n-1[bcf:2n—z + dizu-l + b(bCEZn-a + dEZn—Z)]
a+b -1

+

[e(a - 1) + d(a - 2)][1 - p?*71]
a+b -1

+

Bon-y @on * on-d)  faa - 1) + d(a - DI[1 - p?Y
a+b-1 * a+b-1

by definition of P . But this implies the desired result.
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Of course, if b = 1, these yield the formulas of Theorem 3 as they should.
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