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1. FIBONACCI NUMBERS AND CHEBYCHEV POLYNOMIALS 

Properties of Fibonacci numbers have been known for a very long time. Their 
origin dates back to the year 1202 with the publication of the Liber Abaci by 
the Italian mathematician Leonardo of Pisa, better known to us by the nickname 
"Fibonacci," a short form of Filius Bonacci, meaning "Son of Bonacci." 

Fibonacci seems to have had a sense of humor apart from his mathematical 
talents: Liber was a Latin God, son of Ceres and brother of Proserpina. The 
Romans assimilated this God to Bacchus or Dyonisus, the Greek god of wine. 
Festivals, known as "Liberalia," were celebrated every year honoring Liber Ba-
cus. Since Liber Abaci means Book of the Abacus* Fibonacci may have amused 
himself by naming his book, at a time of strong domination by the Roman Catho-
lic Church, in a way reminiscent of a pagan god of wine and fertility. We know 
Fibonacci was fond of play on words. For instance, he signed some of his work 
"Leonardo Bigollo." Bigollo is a work meaning both "traveler," which Fibonacci 
certainly was, and "blockhead." It has been said that Fibonacci had in mind 
the latter meaning to tease his contemporaries who had ridiculed him for his 
interest in Hindu-Arabic numerals and methods. Fibonacci had become a very 
successful mathematician whith these methods. 

Fibonacci did not discover any of the properties of the sequence which 
bears his name. He simply proposed, and solved, in the Liber Abaci* the prob-
lem of how many rabbits would be born in one year starting from a given pair. 
With some natural assumptions about the breeding habits of rabbits, the popula-
tion of rabbit pairs per month correspond to the elements of the Fibonacci se-
quence— 1, 1, 2, 3, 4, 8, 13, etc.-—where, beginning with zero and one, each 
term of the sequence is the sum of the two preceding ones. 

With the passage of time, this sequence would appear in so many areas 
with no possible connection to the breeding of rabbits that, in 1877, Edward 
Lucas proposed naming it Fibonacci Sequence and its terms Fibonacci Numbers. 
The fertility of this sequence seems to be inexhaustible, and every year new 
and curious properties of it are discovered. Fn has become the standard symbol 
for Fibonacci numbers, and their defining relation is 

F = F n + F o9 Fn = 0, F1 = 1. n n-\ n-2s 0 1 

In spite of the above preamble, it will, perhaps, appear as surprising to 
encounter some new, simple, and unexpected relations between Fibonacci numbers 
and Chebychev polynomials. Let us proceed to their derivation. 

The known relation [8] for Chebychev polynomials of the first kind, 

Tn(x) = h\(x + Vx2 - l)n + (x - Vx2 - l)n], (1) 

gives, with x = v5/2, 

i,.(^).i[(H^)-+W).(H^"]. 
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For odd n, this relation coincides with Binet!s formula [6] for Fibonacci num-
bers: 

H^r - (H^r 
Thus, we obtain 

F = -^ 
- ( * ) • 

(3) 

(4) 

In a similar fashion, the known relation for Chebychev polyonmials of the 
second kind9 

~(a? + Vx2 - l)n+1 - (x - Vx1 - l)n + 1~] Un{x) = h 
V(x2 - 1) 

gives9 with x - v5/2, and n replaced by 2n - 1, 

The relation [8], 

Tn(x) = Un(x) - xU„_1(.x), 

(5) 

(6) 

(7) 

gives5 after changing n to 2n + 1, letting x = v5/2, and using (4) and (6) and 
the recurrence relation for Fn3 

F + F mU (£\ 
r 2 n T £ 2n + 2 u 2n\ 2 1 

(8) 

Equation (7) gives, after changing n by 2n, letting x = v^/2, using (4), (6), 
and the recurrence relat ion tor r y% 

+ F„ 2n + l *2n-l (y/5\ 
2

 12n\2 J* 

The relation [12] 

p = p p + p p 

(9) 

(10) 

which can be proved by induction, gives, after replacing both n and m by 2n+ 1, 
together with (8), the result 

-=<4#). ( i i ) 

Replacing both n and m in (10) by 2n gives, together with (9), the result 

F, 
(12) 

Equations (4), (6), (8) or (11), and (9) or (12) relate all Chebychev polyno-
mials with argument v5/2 with Fibonacci numbers. 

Identities that relate Chebychev polynomials lead to identities for Fibo-
nacci numbers. For instance, the relation [5] 
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n - l 

m = 0 
ZjFzm+lW = ^ - l W 

gives , with x = \/5/2, the known resu l t [6] 

n - l 

m = 0 

Equation [5] 

2/77+1 2 n 

2(1 -*2) E ^ . ! ^ ) -«-2'2„+1(«). 
772 = 1 

gives , with x = ^5 /2 , the known resu l t [6] 

£ F = F - 1. 
m ^ 2 2777 2 n + l 

Binet's formula (3) gives us 

F = — 
2n+1 A 

/ l + V5\2" + 1 _ (l^_S\2n + 1 

= 1 1/1 + V5Yn + l
 + / l - V5\2*+1~1 _ 2 / l - 75 \ 2 W + 1 

In an iden t ica l fashion, we obtain from (2) and (3) the approximation 

2 „ /V5^ 
L In r- x In 

V5 ®-

(13) 

(.14) 

Equations (8) and (9) combine with equations (13) and (14) to give the follow-
ing interesting approximate relations 

F + F n-1 n+l 

A 
(15) 

In (10), m - n gives, together with (15), the following approximate relation: 

s 
s Fz. 

The exact relation corresponding to (15), obtainable from (3), is 

2 F + F 
n-l n+l 

YE 
= F + 

A H®>'-

(16) 

(17) 

From (17) we see that (15) approximates Fn by excess for even n, and by defect 
for odd n-

Equations (13) to (16) give excellent approximations if n is greater than 
5. 
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2. EXPANSIONS WITH FIBONACCI COEFFICIENTS 

Chebychev polynomials are special cases of Jacobi polynomials P„ (x). The 
exact relations are [5]: 

Un(x) = {2gn + iyxP^\x) , 

with 

_ ft)„ 
$ n nl ' 

Consider the expansion [8]9 due to Gegenbauer9 

expert) = (|)"Vr(v) f) (v + n)Iv + n(t)C^(x)5 (18) 

where Ik(t) are modified Bessel functions of the first kind [5]9 given by 

and C^(x) are ultraspherical polynomials [8] defined by: 

(2V)„P<V-*' ̂ ( x ) 

4>> (v + h)„ 

In terms of Gegenbauer polynomials, Chebychev polynomials are given by: 

Un(x) = c\{x), (19) 

-,V Cnix) 
Tn (x) = lim . (20) 

v+o c v ( 1 ) 

In (18) , replace x by -as, recalling that Cn{-x) = (-l)n(7^(x)5 and subtract the 
resulting series from (18) to obtain 

sinh xt = ( | ) VT(v) £ (v + In 4- 1)JV+ 2 n + x ( t ){72
v

n + ^a?) . 
\ Z / n = 1 

Now let V = 1. Replace t by -it and recall that In(-it) = i'nJn(t)9 where 
Jn(t) are Bessel functions of the first kind. Let x - /5/ 2, replace n by n - 1, 
and finally let >/5£/2 = 5s to obtain, with the help of (19) and (6), 

sin 5 = | £ (-Dn + 12nF2nJ2n(25//5). (21) 

Separating the ei?en part of (18), instead of the odd, gives, with the use of 
(8) and (11), 

/ " C O F 

cos ^ = ̂  £ (-Dn(2n + 1) T ^ - ̂ 2n + 1 (2?/i/5) , (22) 
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cos C = 1 £ ("Dn(2n + 1) 
^ y? = 0 

F + F 
2n 2n + 2 

& 
J
2„ + i<2^>- (23) 

If use is made of equation (17), (23) can be written as 

cos 5 = I t <-l)»(2n + l)F2n+lt72n + 1(25/A) 

+ (24) 

The terms in the second series in (24) tend to zero very rapidly with increas-
ing n. 

Series (21) to (24) converge very rapidly and are, to the author's knowl-
edges completely new results. 

Paul Byrd [4] obtained some expressions for the sine and the cosine with 
Fibonacci coefficients that are very similar to (21) and (24). Byrdfs results 
are: 

and 
sin K = j t (~l)n + 12nF2I2n(2K)9 

*=• n = 1 

cos g= \ ±Q(-ir(2n + l)F2n + 1I2n + 1(2Z), 

where In(^) are modified Bessel functions of the first kind. 
From the series 

log(l + x) = L (-1)n+lx" 
n-1 n 

we obtain, in an obvious manner, using (3), the interesting expansion 

„ (-l)n + 1Fntn 

= 1/5 E . 
n-1 n 

1 

[ 1 
+ 

+ 

l_ 

l_ 

+ VE 
2 

- VE 
2 

t 

t 
(25) 

It must be noticed that this is a general technique. Given a function 
f(x9 t) that allows for an expansion of the form 

f(x, t) = Y.an{t)Cv
n{x), (26) 

it is necessary only to give appropriate values to V, and to let x equal v5/2, 
provided v5/2 is within the x-region of convergence, to come to an expression 
such as (21)9 (23), or (25). References [3] and [8] contain ample information 
on conditions that guarantee the validity of results such as (26). 

It is important to bear in mind that Fibonacci numbers grow very rapidly, 
for example, F10 = 55, F2Q = 6765, F30 = 832,040, F^Q = 102,334,155. Hence, 
when an expansion with Fibonacci coefficients is convergent, the an(t) must 
decrease very rapidly with increasing n. If t is not near the boundary of the 
t-region of convergence, this circumstance makes these series very amenable for 
numerical work. We will illustrate this fact in the following sections. 

ik [Feb. 



RAPIDLY CONVERGING EXPANSIONS WITH FIBONACCI COEFFICIENTS 

3. A SERIES FOR THE ARC TANGENT 

Consider the identity9 

easily verified by taking the tangent of both sides. 
Let us substitute the expansions 

tan-H - £ o ^ n \ l , (27) 

on the two terms on the right-hand side above9 and make use of equation (1) to 
obtain5 

- " r ? - ! , ? , — £ ^ T — • 
Series (27) 9 known as Gregory1s series9 is a special case of series (28) cor-
responding to x = 19 when use is made of the identity for the tangent of the 
half-angle: tan"1[2?/(l - ?2)] = 2 tan"1?. 

In (28), let x = v5/29 v5? = £* and use equation (4) to obtain 
/ i \ n w j_2n+l 

tan = 2^ 
5 - t2 n = 0 5n(2n + 1) 

Now let 5t/(5 - t2) = a > 09 and choose the smaller of the roots of this 
quadratic equations to obtain 

tan_1a = £ , (29) 
^ = o 5n(2n + 1) 

with 

t = 
1 + Vl + (4a2/5) 

* = Z a
 9 (30) 

a curious and simple series for the arc tangent with odd Fibonacci numbers as 
coefficients. 

4. COMPARISON WITH EULER'S SERIES FOR THE ARC TANGENT 

Series (27) discovered by Gregory in 16719 converges very slowly except for 
very small values of its argument. For £ = 1, for example, it yields Leibniz1 

celebrates series for TT/4 that requires two thousand terms to give three deci-
mal figures of JI. 

Let us use Pochhammer?s symbol 

(a)n = a (a + 1) (a + 2) • • • (a + n - 1), a ^ 09 

and the identity (3/2)n/(l/2)n = In + 1 to write (27) in hypergeometrie form: 

tan_1t = tF(ls 1/2; 3/2; -£ 2 ) . (31) 
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Now consider the relation 

F(a9 b; o; z) = (1 - z)~aF{a9 a - b; o; -s/(l - s)), (32) 

valid if \z\ < 1, and \z/(l - z)\ < 1. This relation is an equality among two 
of Rummer's twenty-four solutions to Gauss's hypergeometric differential equa-
tion. In (32), let a = 1, b = 1/2, a = 3/2, and z = -t2, to obtain 

tan_1t = tF(l, 1/2; 3/2; -t2) = [£/(l + t2)]F(l, 1; 3/2; t2/(l + t2)). 

Since (2ft + 1)! = (2)2n = 22nn!(3/2)n, the above equation gives 

y* -±—L512 ^~ (33) 
n%(2n +1)1 (1 + t2)n + i-

Inasmuch as t2/(I + t2) < 1 for every real t, we can conclude that (33) con-
verges for every real value of its argument. 

Equation (33) is Euler's famous series for the arc tangent discovered in 
1755. This series converges very rapidly for all t9 and especially for small 
values of its argument. 

Let t = a « 1. Using Stirling's formula for the factorial 

nl s Vz7rn(n/g)n, n large, 

we o b t a i n , fo r t he g e n e r a l term an of E u l e r ' s s e r i e s , t he e s t i m a t e 

„ e^Jn2n + 1a2n + 1 
an = . (34) 

2 (ft + h)2n + 3/2 

I f ft i s l a r g e , ft + \ = n , and we have the e s t i m a t e 

n „ e^R a2n + 1 _ 
an = - ^ — - - (35) 

Vn 
To compare this result with the corresponding one for series (29)5 notice 

that for a small (30) gives t = a. For the general term, omitting the sign, bn 
of series (29), we then have, recalling equation (3), the estimate 

b" = wn\—r~) • (36) 

Comparison of (34) or (35) with (36), observing that the expression in paren-
theses above is 0.723606798... < 1, shows that, for small values of its argu-
ment, series (29) converges substantially faster than (33). 

The requirement of the argument being small is only an apparent restric-
tion, necessary to simplify the proof above. If a is large, it is simply 
necessary to use the identity 

tan_1a = ~ - tan"1—, (a > 1). 

Series (29) has the added advantage of being an alternating series, which 
series (33) is not. It is, as is well known, a general property of such series 
that the remainder after n terms has a value which is between zero and the 
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first term not taken. It is a simple matter, then9 to determine the number of 
terms of (29) needed to obtain a given accuracy. 

If in series (28) we let x = cos 09 2E, cos 0/(1 - £2) = a, solve for E, in 
terms of a and cos 09 and substitute back into (28)s recalling that Tn(cos 0) = 
cos n9s we obtain the curious series 

tan-a = 2 £ ( - 1 ) ^ — coS(2n + 1 ) J L ^ § (o < 9 < f). (37) 
n = 0 (2n + l)(cos 6 + Va2 + cos20) V Z / 

where the right-hand side is independent of 0„ The rapidity of the conver-
gence 9 though, depends on the choice of 0. Series (37) converges very rapidly 
if both a and 0 are small. 

5. ANOTHER SERIES FOR THE ARC TANGENT 

Iteration of the method used in Section 3 to obtain equation (28) yields a new 
series for the arc tangent. In (28) 9 replace £ by E,(x + Vx2 - 1) and by E, (x -
Vx2 - 1) and add the two arc tangents to obtain 

_ -i 2xE,(x + Vx2 - 1) , -i 2xE,(x - Vx2 - 1) tan — + tan — -

4E 

(x + Vx2 - l)2?2 1 - (a; - /x2 - 1)2£2 

(-ir4+1(x)^2"+i 

»-o 2 n + 1 

Combining the two arc tangents by means of the identity 

-l . -I? -i a + b 
tan a + tan b = tan T- 9 

1 - ab 
we obtain 

tan x ^ ^ S_J . 4 ^ ^ . ( 3 8 ) 

1 - 2(4x2 - l)?2 + ?* »-o 2 n + X 

Gregory's series (27) is the special case of (38) corresponding to x = 19 if 
use is made of the identity for the tangent of one-fourth of the angle: 

A i - 6£2 + e 

Let the argument of the arc tangent in (38) equal a, and solve the result-
ing fourth-degree equation for 5°  The solution is easily obtained by dividing 
through by ?2

9 and making the substitutions £ - 5"1 = -2£, £2 + £T2 = 4t2 + 29 

which reduces it to two quadratics. The results are 
2 

5 = (t + /t2 + l)"1 and £ = 2L(1 + Vl + [a2(2^ - l)/a?*]). (39) 

Now9 if we let x = >/5/2 in (38) and (39)9 we obtain 

(~l)nF2 

-1 r T^ 2n+l 

tan xa = 5 £ , (40) 
* = °  (2n + l)(t + V ^ T T ) +1 
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with 

t = ̂ ( 1 + Vl + (24aV25)). (41) 

Series (40) converges substantially faster than series (29) . If a is small, 
the nth term, cn9 of series (40), is, apart from the sign, approximately given 

°n 2n+l\ 2 ) • ^Z) 

6. THE NEXT ITERATION 

Iteration of formula (38) by the method used in Section 5 gives, after some 
simple but lengthy algebra, the result 

tan-1 to3[g- (12a;2-5)g3 + (12a;2-5)g3-g7] 

1- 4(12x't- 6x2+ l)£2+2(32a;6 + 24a;lf- 24a; + 3)?1*- 4(12x'f - 6a;2 + l)g6 + $8 

- (-vnTi+(x)en+i 

= 8„?0 S " i • ^ 
If we let the argument of the arc tangent in (43) equal a we obtain, after di-
viding through by E,h and setting 

5 - r1 = -2*//5, e + r2 = U2 + 2, c3 - r3 = -—*3 - — t, 
ri+ r-i+ 16 , i+ 16 ,2 . o J v 5 
£/ + g = -05 ̂  + "T"^ + 2* and # = ~2~ > 

the result is 
( nnq"+2p3 

(44) 
n = 0 (2n + l)(t + /t2 + 5 ) 2 n + 1 

with £ the largest positive root of 

8ath - 100t3 - 450at2 + 875t + 625a = 0. (45) 

This quartic equation is in yvinevgte solvable by radicals [1] for any value 
of a,. The algorithm, though, does not seem to lead to any manageable combina-
tion of radicals, and for its solution we resorted to Newtonfs iterative method. 
Several solutions are discussed in the next section. 

7. SOME SERIES FOR IT 

To illustrate the convergence of series (29), (40), and (44), we will obtain 
some expressions for TT. Let a = 1 in (30), and substitute into (29) to get 

(-i)nF2n+122n+3 

T T = A E — . (46) 
»-°  (2n + 1)(3 + V/5)2* + 1 
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a = 1 in equation (41) when substituted into (40) gives 

J^ v J 2n+l 
7T = 20 £ . (47) 

n'0 (2n + 1)(3 + /l0)2n + 1 

Thirty-two terms of (46) give fifteen decimal places of TT, while series (47) 
requires nineteen terms. For a = 1, the largest positive root of (45) is 

t = 15.63057705819013... . 

With this value of t fourteen terms of (44) give fifteen decimal figures of TT. 
Euler!s series (33) for the same argument and for the same accuracy requires 
fifty terms. 

From equations (36) and (42), we see that rapid convergence of series (29) 
and (40) depends on our ability to choose the argument of the arc tangents or, 
which is the same, the angle, sufficiently small. For example, 

•JJ = tan"1 (2 - V3). 

For this arguments series (29) gives 

TT 12v^ £ 
(-DnF, 

2n+l 
n=0 2n + 1 

2(2 - y/3) 

VE + /l + 16(2 - V3) 
(48) 

The expression in brackets above is 0.1181577543..., which is more than seven 
times smaller than the corresponding root for equation (46). Series (48) con-
verges very rapidly. Ten terms give fifteen decimal places of TT. For this 
same argument the corresponding value of equation (41) is t = 9.488217845... . 
With this value of t nine terms of (40) give fifteen decimal figures of IT. 
Euler!s series (33) for the same argument and for the same accuracy requires 
thirteen terms. 

Use of Machinfs formula, 

TT = 16 tan'1 (1/5) - 4 tan-1 (1/239) , (49) 

with a in (41) equal to 1/5 and to 1/239 gives values for t which are approxi-
mately, 

t = 12.61886960..., and tf = 597.5025107... . 

Using these values on (49) with series (40), we obtain a very rapidly converg-
ing series for TT. A computer run with the double-precision routines of the 
BASIC Level II interpreter of the Radio Shack TRS-80 Model I microcomputer with 
this combination of arc tangents gave the values shown in the following table 
for Gregoryfs series (27), Euler's series (33), and series (40). We see that 
series (40) consistently gives better approximations than either Euler's or 
GregoryTs series. Series (29) will also, of course, converve more rapidly than 
Gregory's or Eulerfs series (n = 9). 
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n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Gregory 

3.183263598326360 
3.140597029326061 
3.141621029325035 
3.141591772182177 
3.141591682404400 
3.141592652615309 
3.141592653623555 
3.141592653588603 
3.141592653589836 
3.141592653589792 
3.141592653589794 
3.141592653589793 

3, 
3. 
3, 
3, 
3, 
3, 
3. 
3, 
3. 
3. 
3. 

Euler 

.060186968243409 
,139082236428362 
.141509789149037 
.141589818359699 
.141592554401089 
.141592650066872 
.141592653463209 
,141592653585213 
,141592653589626 
.141592653589787 
,141592653589793 

3. 
3, 
3, 
3, 
3. 
3, 
3, 
3, 

Series (40) 

.148158616418292 

.141554182069219 

.141592944101887 

.141592651171905 

.141592653611002 

.141592653589601 

.141592653589795 

.141592653589793 

The largest positive root of (45) corresponding to a = 1/5 is 

t = 63.25229744727801..., 

and the one corresponding to a = 1/239 is 

t1 = 2987.51589950963... . 

Using these values on (49) with series (44) gives fifteen decimal figures of IT 
after seven terms (ji = 6). We see that with the use of expressions such as 
Machin's identity (49), iterations beyond the second are not worth the added 
labor, it being much simpler to work with series (40). 

Application of the trigonometric identities 

tan-1—1-T- = tan"1- + tan"1 0 A \ ^ . , (50) 
a ± b a a* ± ab + 1 

and 
tarf1^ = 2 tan-S^ _ t a n - i _ L _ ( 5 1 ) 

on simpler formulas such as Machinfs identity, or on the identity 

7T = 20 tan^1 (1/7) + 8 tan"1 (3/79), (52) 

due to Euler, give additional expressions for the calculation of TT. Repeated 
application of (51) to Machin's formula, letting a equal 5, 10, 20, and (40), 
in turn, yields the identity 

TT = 256 tan"1(1/80) - 4 tan"1(1/239) - 16 tan"1(1/515) - 32 tan"1(1/4030) 

- 64 tan"1(1/32,060) - 128 tan"1(1/256,120), (53) 

first obtained by Cashmore in [7]. Identity (53) together with (40) provides 
an extremely rapidly converging series for the calculation of TT . Four terms of 
this series give fifteen decimal figures of TT. Euler*s series (33) also re-
quires four terms. The computed values are shown in the following table. 
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n Euler's Series Series (40) 

0 3.141259656493609 3.141619294232185 
1 3.141592611940046 3.141592652964994 
2 3.141592653584216 3.141592653589812 
3 3.141592653589793 3.141592653589793 

Once again we see that (40) converges to its limiting value faster than does 
Euler?s series. As more decimal figures are calculated, though, the difference 
between the series becomes significant and the tide swings in favor of our se-
ries. For the same value of the argument, the tenth term of Euler's series is 
4.54 x 106 times bigger than the tenth term of (40). The twentieth term of 
Euler's series is 2.60 x 1012 times bigger than the corresponding one of (40). 
The thirtieth term is 1.35 x 1018 times bigger. The one hundredth term is al-
ready 1.46x 1058 times bigger, and the one hundred fiftieth term is 2.25x 1Q86 

times bigger. 
With the combination of arc tangents given in (53), twenty-three terms of 

(40) give one hundred decimal places of TT. Two hundred twenty-six terms will 
give one thousand decimal places of TT. The calculation of the radicals in (40) 
and (41) can be performed very quickly, because of the smallness of a, with the 
quadratically converging algorithm given in Rudin [10]. Identity (53) is very 
amenable for a high-precision calculation of TT. It would be of interest to 
compare (53) against Eugene Salamin's quadratically converging algorithm [11] 
based on the theory of elliptic integrals. 

It should, perhaps, be mentioned that there exist series for the calcula-
tion of TT which converge faster than any series we have obtained. For example, 

1103 + 27493 l_ 1 « 3 + 53883 1 °  3 1 - 3 • 5 • 7 + 1 ( 5 4 ) 

992 996 2 42 9910 2 • 4 42 • 82 J" 

due to Ramanujan [9]. The numerators of the first fractions of each term above 
are in arithmetic progression, Three terms of (54) give seventeen decimal fig-
ures of TF! 

As stated at the beginning of this section, we have used TT simply as an 
illustration of the convergence of the arc tangent series (29), (40), and (44), 
and these series do converge faster than any other known arc tangent series. 

It is an interesting historical fact that Fibonacci made an attempt to 
determine the value of TT using Archimedes1 method of inscribed and circumscribed 
polygons. Using a 96-sided polygon, he obtained for TT the approximation 864 -=-
275, which gave him the value 3.141818, correct to three decimal places [2], 
It seems safe to think that he never suspected that the peculiar sequence he 
had discovered on the growth of the rabbit population would yield, nearly eight 
centuries later, a simple and powerful algorithm for the calculation of TT with 
any desired accuracy. 
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