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1. INTRODUCTION 

For each given pair of positive integers k9 ns with k < ns -a /c-part partition 
of n is a ^-element multi-set of positive integers whose sum is n% e*gos all of 
the 3-part partitions of 7 arei [5, 1, 1], [4, 2S 1], '[3, 3,1], and [3, 2, 2]. 
In this paper we are especially interested in k-part partitions of numbers for 
which k = 2, 4 and all of the parts are squares. We briefly refer to these as 
2-square and 4-square partitions of a number• Thus, [4, 1] is a 2-square par-
tition . of 5. Also, recall that for each positive integer n9 o(n) denotes the 
sum of all positive divisors of n. 

We are now prepared to state our results* 

Theorem 1: A nonsquare odd number n has an odd number of 2-square partitions 
if and only if 0(n) is twice an odd number, iee., n = pem2* es ms p e Z +, p a 
prime, p \ m3 and p = e. = 1 (mod 4). 

Theorem 2: If a.is odd and not of the form j(3j ± 2), then 3a + 1 has an odd 
number of 4-square partitions of the form 

3a + 1 = 3j2 + (6k ± I) 2 , j, k e 2+ 

if and only if a is a square. 

In Section 2, we prove these theorems, and also deduce Fermat's classical 
two-square theorem as an immediate corollary of Theorem 1. 

2, PROOFS OF THEOREMS 1 AND 2 

Our proofs are based on two recurrences for the sum-of-divisors function. 
These recurrences are best stated with the aid of several auxiliary arithmeti-
cal functions, which we now define* 

Definition: For each positive integer n, bin) denotes the exponent of the 
highest power of 2 dividing n\ and, Oin) is then defined by the equation 

n - 2Hn)0iri)» 

Hence, bin).is a nonnegative integer and Oin) is odd* We now define the arith-
metical functions a) and p bys 

a)(n) = oin) + a(<9(n)), p(n) = 3a(n) - 5o(0(n))« 
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The two recurrences are9 for each positive integer mi 

(1) a(2m - 1) - £ oo(2m - 1 - (2/c - I)2) + 2 £>(2m _ i _ (2k)2) 
fc = l k=l 

(j2, if 2m - 1 = j 2 , 

( 09 otherwise. 

(2) o(2m - 1) + E (6fe + 1)0(2m - 1 - 2k(6k + 2)) 
fc = i 

- E (6fe - l)a(2m - 1 - 2k(6k - 2)) 
fc = i 

+ E Ofc - 1)P(2TTZ - 1 - (27c - l)(67c - 1)) 
fc = i 

- E Ok - 2)p(2m - 1 - (2/c - l)(6/c - 5)) 

-J(3j + l)(3j + 2)/2, if 2m - 1 = J(3J + 2), 

J(3J - 2) (3 - l)/2, if 2m - 1 = J(3J - 2), 

09 otherwise. 

In both (1) and (2)9 the sums indexed by k extend over all values of k which 
cause the arguments of a9 a)s and p to be positive. For a proof of (1)9 see [19 
pp. 215-217], (2) is proved in [2, pp. 679-682]9 where p(n) = oo(39 -5; n). 

Proof of Theorem 1: Assume that 2m + 19 with m > 09 is nonsquare. Recurrence 
(1) then becomes 

(3) a(2m + 1) - E ^(2m + ] - (2fe - I)2) + 2 E a ( 2 w + l ~ (2^)2) = 0. 
i i 

If a(2m + 1 ) is twice an odd number9 say o(2m + 1) = 4a + 29 for some 
a ^ 09 then (3) becomes 

la + 1 - E M ( 2 m + 1 ) - (2fe- D 2 ) + £ a ( 2 m + 1 - (2fc)2) = 0. 
1 l 1 

Next, owing to the multiplicativity of a9 oo(n) = 2&(n) + l o(0(n)) . Hence, for n 
even, 4 divides co(n). It follows that the sum Ea(2m + 1 - (2k)2) is odd and9 
therefore9 contains an odd number of odd summands. But9 from the well-known 
fact: o(n) is odd <N=i> n is a square or twice a square9 it then follows that 
there is an odd number of pairs 2ks 2j - 1 (j9 fc e 2+) such that 

2m + 1 = (2k)2 + (2j - I)2. 

In a word9 2m + 1 has an odd number of 2-square partitions. 
Conversely5 if 2m + 1 has an odd number of 2-square partitions9 then re-

currence (3) allows us to reverse the steps of the foregoing argument9 whence 
cr(2m + 1) E 2 (mod 4); i.e., a(2m + 1) is twice an odd number. 

Corollary (Fermat): Each rational prime p of the form km + 1 is expressible as 
a sum of two squares. 

68 [Feb. 



ON TWO- AND FOUR-PART PARTITIONS OF NUMBERS EACH PART A SQUARE 

Proof: For such a prime ps o(p) = p + l = 4 w + 2 = 2(2m + 1). Hence* p has at 
least one 2-square partition. 

Proof of Theorem 2: Assume 2m + 1, with m > 0S is not of the form J(3J ± 2). 
Recurrence (2) then becomes 

(4) a(2?7? + 1) + £ (6fc + l)a(2rc + 1 - 2&(6fc + 2)) 
k = l 

- £ (*>k - l)a(2w + 1 - 2fc(6£ - 2)) 
k = l 

+ L (3k - l)p(2w + 1 - (2k - I)(6k - 1)) 
k = l 

- H Ok - 2)p(2m + 1 - (2k - 1)(6£ - 5)) = 0. 
k = l 

If 2m + 1 is a square9 then a(2m + 1) is odd. Nows 

p(n) = 2(3- 2b(n) - 4)a(£(n)). 

Hence9 the sum 

E (t>k + l)a(27?z + 1 - 2k(6k + 2)) - E (6k - l)a(2/?? + 1 - 2k(6k - 2)) 
I l 

is odd and therefore contains an odd number of odd summands. In a word, there 
exists an odd number of pairs j s k € 2+ such that 

2m + 1 = j 2 + 2k(6k ± 2)9 

or equivalently* 

3(2m + 1) + 1 = 3d2 + (6k ± I)2. 

Conversely9 if 3(2m + 1) + 1 has an odd number of 4-square partitions of 
the prescribed form5 then recurrence (4) allows us to reverse the steps of the 
foregoing argument. And9 then9 2m + 1 must be a square. 
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