ON TWO- AND FOUR-PART PARTITIONS OF NUMBERS EACH PART A SQUARE

JOHN A. EWELL Northern Illinois University, DeKalb, IL 60115 (Submitted May 1984)

1. INTRODUCTION

For each given pair of positive integers k, n, with $k \leq n$, a k-part partition of n is a k-element multi-set of positive integers whose sum is n; e.g., all of the 3-part partitions of 7 are: [5, 1, 1], [4, 2, 1], [3, 3, 1], and [3, 2, 2]. In this paper we are especially interested in k-part partitions of numbers for which k = 2, 4 and all of the parts are squares. We briefly refer to these as 2-square and 4-square partitions of a number. Thus, [4, 1] is a 2-square partition of 5. Also, recall that for each positive integer n, $\sigma(n)$ denotes the sum of all positive divisors of n.

We are now prepared to state our results.

Theorem 1: A nonsquare odd number n has an odd number of 2-square partitions if and only if $\sigma(n)$ is twice an odd number, i.e., $n = p^e m^2$, e, m, $p \in \mathbb{Z}^+$, p a prime, $p \nmid m$, and $p \equiv e \equiv 1 \pmod{4}$.

Theorem 2: If a is odd and not of the form $j(3j \pm 2)$, then 3a + 1 has an odd number of 4-square partitions of the form

 $3a + 1 = 3j^2 + (6k \pm 1)^2$, $j, k \in \mathbb{Z}^+$

if and only if a is a square.

In Section 2, we prove these theorems, and also deduce Fermat's classical two-square theorem as an immediate corollary of Theorem 1.

2. PROOFS OF THEOREMS 1 AND 2

Our proofs are based on two recurrences for the sum-of-divisors function. These recurrences are best stated with the aid of several auxiliary arithmetical functions, which we now define.

Definition: For each positive integer n, b(n) denotes the exponent of the highest power of 2 dividing n; and, O(n) is then defined by the equation

 $n = 2^{b(n)} \mathcal{O}(n) \, .$

Hence, b(n) is a nonnegative integer and O(n) is odd. We now define the arithmetical functions ω and ρ by:

$$\omega(n) = \sigma(n) + \sigma(\mathcal{O}(n)), \quad \rho(n) = 3\sigma(n) - 5\sigma(\mathcal{O}(n)).$$

1986]

67

The two recurrences are, for each positive integer m:

(1)
$$\sigma(2m-1) - \sum_{k=1}^{\infty} \omega(2m-1-(2k-1)^2) + 2\sum_{k=1}^{\infty} \sigma(2m-1-(2k)^2)$$

= $\begin{cases} j^2, & \text{if } 2m-1=j^2, \\ 0, & \text{otherwise.} \end{cases}$

(2)
$$\sigma(2m-1) + \sum_{k=1}^{\infty} (6k+1)\sigma(2m-1-2k(6k+2))$$

 $-\sum_{k=1}^{\infty} (6k-1)\sigma(2m-1-2k(6k-2))$
 $+\sum_{k=1}^{\infty} (3k-1)\rho(2m-1-(2k-1)(6k-1))$
 $-\sum_{k=1}^{\infty} (3k-2)\rho(2m-1-(2k-1)(6k-5))$
 $=\begin{cases} -j(3j+1)(3j+2)/2, & \text{if } 2m-1=j(3j+2), \\ j(3j-2)(3-1)/2, & \text{if } 2m-1=j(3j-2), \\ 0, & \text{otherwise.} \end{cases}$

In both (1) and (2), the sums indexed by k extend over all values of k which cause the arguments of σ , ω , and ρ to be positive. For a proof of (1), see [1, pp. 215-217]. (2) is proved in [2, pp. 679-682], where $\rho(n) = \omega(3, -5; n)$.

Proof of Theorem 1: Assume that 2m + 1, with $m \ge 0$, is nonsquare. Recurrence (1) then becomes

(3)
$$\sigma(2m+1) - \sum_{1} \omega(2m+1 - (2k-1)^2) + 2 \sum_{1} \sigma(2m+1 - (2k)^2) = 0.$$

If $\sigma(2m + 1)$ is twice an odd number, say $\sigma(2m + 1) = 4\alpha + 2$, for some $a \ge 0$, then (3) becomes

$$2a + 1 - \sum_{1} \frac{\omega(2m+1) - (2k-1)^2}{2} + \sum_{1} \sigma(2m+1 - (2k)^2) = 0.$$

Next, owing to the multiplicativity of σ , $\omega(n) = 2^{b(n)+1}\sigma(\mathcal{O}(n))$. Hence, for n even, 4 divides $\omega(n)$. It follows that the sum $\Sigma\sigma(2m+1-(2k)^2)$ is odd and, therefore, contains an odd number of odd summands. But, from the well-known fact: $\sigma(n)$ is odd $\iff n$ is a square or twice a square, it then follows that there is an odd number of pairs 2k, 2j - 1 $(j, k \in \mathbb{Z}^+)$ such that

 $2m + 1 = (2k)^2 + (2j - 1)^2$.

In a word, 2m + 1 has an odd number of 2-square partitions.

Conversely, if 2m + 1 has an odd number of 2-square partitions, then recurrence (3) allows us to reverse the steps of the foregoing argument, whence $\sigma(2m + 1) \equiv 2 \pmod{4}$; i.e., $\sigma(2m + 1)$ is twice an odd number.

Corollary (Fermat): Each rational prime p of the form 4m + 1 is expressible as a sum of two squares.

[Feb.

68

ON TWO- AND FOUR-PART PARTITIONS OF NUMBERS EACH PART A SQUARE

Proof: For such a prime p, $\sigma(p) = p + 1 = 4m + 2 = 2(2m + 1)$. Hence, p has at least one 2-square partition.

Proof of Theorem 2: Assume 2m + 1, with $m \ge 0$, is not of the form $j(3j \pm 2)$. Recurrence (2) then becomes

$$(4) \quad \sigma(2m+1) + \sum_{k=1}^{\infty} (6k+1)\sigma(2m+1-2k(6k+2)) \\ - \sum_{k=1}^{\infty} (6k-1)\sigma(2m+1-2k(6k-2)) \\ + \sum_{k=1}^{\infty} (3k-1)\rho(2m+1-(2k-1)(6k-1)) \\ - \sum_{k=1}^{\infty} (3k-2)\rho(2m+1-(2k-1)(6k-5)) = 0.$$

If 2m + 1 is a square, then $\sigma(2m + 1)$ is odd. Now,

$$\rho(n) = 2(3 \cdot 2^{b(n)} - 4)\sigma(O(n)).$$

Hence, the sum

$$\sum_{1} (6k + 1)\sigma(2m + 1 - 2k(6k + 2)) - \sum_{1} (6k - 1)\sigma(2m + 1 - 2k(6k - 2))$$

is odd and therefore contains an odd number of odd summands. In a word, there exists an odd number of pairs $j,\;k\in{\mathbb Z}^+$ such that

 $2m + 1 = j^2 + 2k(6k \pm 2),$

or equivalently,

 $3(2m + 1) + 1 = 3j^2 + (6k \pm 1)^2$.

Conversely, if 3(2m + 1) + 1 has an odd number of 4-square partitions of the prescribed form, then recurrence (4) allows us to reverse the steps of the foregoing argument. And, then, 2m + 1 must be a square.

REFERENCES

- 1. J. A. Ewell. "Recurrences for the Sum of Divisors." Proc. Amer. Math. Soc. 64 (1977).
- 2. J. A. Ewell. "Arithmetical Consequences of Two Identities of B. Gordon." Internat. J. Math. & Math. Sci. 2 (1979).

1986]