ON TWO- AND FOUR-PART PARTITIONS OF NUMBERS EACH PART A SQUARE

JOHN A. EWELL
Northern Illinois University, DeKalb, IL 60115
(Submitted May 1984)

1. INTRODUCTION

For each given pair of positive integers k, n, with $k \leqslant n$, a k-part partition of n is a k-element multi-set of positive integers whose sum is n; e.g., all of the 3 -part partitions of 7 are: [5, 1, 1], [4, 2, 1], [3, 3, 1], and [3, 2, 2]. In this paper we are especially interested in k-part partitions of numbers for which $k=2,4$ and all of the parts are squares. We briefly refer to these as 2 -square and 4 -square partitions of a number. Thus, [4, 1] is a 2 -square partition of 5. Also, recall that for each positive integer $n, \sigma(n)$ denotes the sum of all positive divisors of n.

We are now prepared to state our results.
Theorem 1: A nonsquare odd number n has an odd number of 2 -square partitions if and only if $\sigma(n)$ is twice an odd number, i.e., $n=p^{e} m^{2}, e, m, p \in \mathbb{Z}^{+}, p$ a prime, $p \nmid m$, and $p \equiv e \equiv 1(\bmod 4)$ 。

Theorem 2: If a is odd and not of the form $j(3 j \pm 2)$, then $3 a+1$ has an odd number of 4 -square partitions of the form

$$
3 a+1=3 j^{2}+(6 k \pm 1)^{2}, j, k \in \mathbb{Z}^{+}
$$

if and only if a is a square.
In Section 2, we prove these theorems, and also deduce Fermat's classical two-square theorem as an immediate corollary of Theorem 1.

2. PROOFS OF THEOREMS 1 AND 2

Our proofs are based on two recurrences for the sum-of-divisors function. These recurrences are best stated with the aid of several auxiliary arithmetical functions, which we now define.

Definition: For each positive integer $n, b(n)$ denotes the exponent of the highest power of 2 dividing n; and, $O(n)$ is then defined by the equation

$$
n=2^{b(n)} O(n) .
$$

Hence, $b(n)$ is a nonnegative integer and $O(n)$ is odd. We now define the arithmetical functions ω and ρ by:

$$
\omega(n)=\sigma(n)+\sigma(O(n)), \quad \rho(n)=3 \sigma(n)-5 \sigma(O(n)) .
$$

```
ON TWO- AND FOUR-PART PARTITIONS OF NUMBERS EACH PART A SQUARE
```

The two recurrences are, for each positive integer m :

$$
\begin{align*}
& \sigma(2 m-1)-\sum_{k=1} \omega\left(2 m-1-(2 k-1)^{2}\right)+2 \sum_{k=1} \sigma\left(2 m-1-(2 k)^{2}\right) \tag{1}\\
& = \begin{cases}j^{2}, & \text { if } 2 m-1=j^{2}, \\
0, & \text { otherwise. }\end{cases}
\end{align*}
$$

$$
\begin{align*}
\sigma(2 m-1) & +\sum_{k=1}(6 k+1) \sigma(2 m-1-2 k(6 k+2)) \tag{2}\\
& -\sum_{k=1}(6 k-1) \sigma(2 m-1-2 k(6 k-2)) \\
& +\sum_{k=1}(3 k-1) \rho(2 m-1-(2 k-1)(6 k-1)) \\
& -\sum_{k=1}(3 k-2) \rho(2 m-1-(2 k-1)(6 k-5))
\end{aligned} \begin{aligned}
& - \begin{cases}-j(3 j+1)(3 j+2) / 2, & \text { if } 2 m-1=j(3 j+2), \\
j(3 j-2)(3-1) / 2, & \text { if } 2 m-1=j(3 j-2), \\
0, & \text { otherwise. }\end{cases}
\end{align*}
$$

In both (1) and (2), the sums indexed by k extend over all values of k which cause the arguments of σ, ω, and ρ to be positive. For a proof of (1), see [1, pp. 215-217]. (2) is proved in [2, pp. 679-682], where $\rho(n)=\omega(3,-5 ; n)$.

Proof of Theorem 1: Assume that $2 m+1$, with $m \geqslant 0$, is nonsquare. Recurrence (1) then becomes
(3) $\sigma(2 m+1)-\sum_{1} \omega\left(2 m+1-(2 k-1)^{2}\right)+2 \sum_{1} \sigma\left(2 m+1-(2 k)^{2}\right)=0$.

If $\sigma(2 m+1)$ is twice an odd number, say $\sigma(2 m+1)=4 \alpha+2$, for some $a \geqslant 0$, then (3) becomes

$$
2 \alpha+1-\sum_{1} \frac{\left.\omega(2 m+1)-(2 k-1)^{2}\right)}{2}+\sum_{1} \sigma\left(2 m+1-(2 k)^{2}\right)=0 .
$$

Next, owing to the multiplicativity of $\sigma, \omega(n)=2^{b(n)+1} \sigma(O(n))$. Hence, for n even, 4 divides $\omega(n)$. It follows that the sum $\sum \sigma\left(2 m+1-(2 k)^{2}\right)$ is odd and, therefore, contains an odd number of odd summands. But, from the well-known fact: $\sigma(n)$ is odd $\Longleftrightarrow n$ is a square or twice a square, it then follows that there is an odd number of pairs $2 k, 2 j-1\left(j, k \in \mathbb{Z}^{+}\right)$such that
$2 m+1=(2 k)^{2}+(2 j-1)^{2}$.
In a word, $2 m+1$ has an odd number of 2 -square partitions.
Conversely, if $2 m+1$ has an odd number of 2 -square partitions, then recurrence (3) allows us to reverse the steps of the foregoing argument, whence $\sigma(2 m+1) \equiv 2(\bmod 4)$; i.e., $\sigma(2 m+1)$ is twice an odd number.

Corollary (Fermat): Each rational prime p of the form $4 m+1$ is expressible as a sum of two squares.

Proof: For such a prime $p, \sigma(p)=p+1=4 m+2=2(2 m+1)$. Hence, p has at least one 2 -square partition.

Proof of Theorem 2: Assume $2 m+1$, with $m \geqslant 0$, is not of the form $j(3 j \pm 2)$. Recurrence (2) then becomes
(4) $\sigma(2 m+1)+\sum_{k=1}(6 k+1) \sigma(2 m+1-2 k(6 k+2))$
$-\sum_{k=1}(6 k-1) \sigma(2 m+1-2 k(6 k-2))$
$+\sum_{k=1}(3 k-1) \rho(2 m+1-(2 k-1)(6 k-1))$
$-\sum_{k=1}(3 k-2) \rho(2 m+1-(2 k-1)(6 k-5))=0$.
If $2 m+1$ is a square, then $\sigma(2 m+1)$ is odd. Now,
$\rho(n)=2\left(3 \cdot 2^{b(n)}-4\right) \sigma(O(n))$.
Hence, the sum

$$
\sum_{1}(6 k+1) \sigma(2 m+1-2 k(6 k+2))-\sum_{1}(6 k-1) \sigma(2 m+1-2 k(6 k-2))
$$

is odd and therefore contains an odd number of odd summands. In a word, there exists an odd number of pairs $j, k \in \mathbb{Z}^{+}$such that
$2 m+1=j^{2}+2 k(6 k \pm 2)$,
or equivalently,
$3(2 m+1)+1=3 j^{2}+(6 k \pm 1)^{2}$.
Conversely, if $3(2 m+1)+1$ has an odd number of 4 -square partitions of the prescribed form, then recurrence (4) allows us to reverse the steps of the foregoing argument. And, then, $2 m+1$ must be a square.

REFERENCES

1. J. A. Ewe11. "Recurrences for the Sum of Divisors." Proc. Amer. Math. Soc. 64 (1977).
2. J. A. Ewell. "Arithmetical Consequences of Two Identities of B. Gordon." Internat. J. Math. \& Math. Sci. 2 (1979).
