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1. INTRODUCTION 

The purpose of this paper is to extend and generalize the results established 
in [5] for a category of polynomials described therein as "zigzag." These 
arise in a specified way from a given polynomial sequence generated by a sec-
ond-order recurrence relation. 

Consider the sequence of polynomials {Wn(x)} defined by the second-order 
recurrence relation 

tf„ + 2(*) = kxWn + 1(x) + mWn(x) in > 0) (1.1) 

with initial values 

WQ(x) = h, W±(x) = kx9 (1.2) 

wherein h, k9 and m are real numbers, usually integers. 
We have represented these polynomials in abbreviated form by Wn(x) though 

the parametric symbolism Wn(h, kx; kx, m) more fully describes them. Note that 
a characteristic feature of the definition (1.1) and (1.2) is that the initial 
value W1(x) = kx in (1.2) must be the same as the coefficient of Wn + x(x) in the 
recurrence (1.1). 

Standard methods enable us to derive the generating function for {Wn(x)}, 
namely, 

L Wn(x)tn = {h + kx(l - h)t}[l - (kxt + rnt2)]'1 (1 .3 ) 

n = 0 

o r , e q u i v a l e n t l y , 

lLWn + 1(x)tn = {kx + mht)[l - (kxt + mt2)]'1. (1 .3 ) ' 
n = 0 

An explicit form of Wn(x) (n ^ 2) is, in the usual notation, 

Wn(x) = fcr £ (n ~ \ ~ ^mHkx)"-1-2' +mh h (* " 2 " ^ ( t o ) * - 2 " 2 * . 
i=o \ ^ I i = 0

 v *" ' 
(1.4) 

This formula will be essential when we prove (3.3). 
At this point, we stress that Wn(h, kx; kx, m) defined above is a polyno-

mial variation of the Wn(a9 b; p, q) , wherein a - h, b = p = kx, q = m, whose 
basic and special properties have been discussed in [7] and [8]. Therefore, no 
further consideration of its salient features is required here. 

Special cases of Wn(h, kx; kx, m) which interest us are (when la = 2 ) : 
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POLYNOMIALS 

Lucas 
Pe Il-Lucas 
Chebyshev (2nd kind) 
Fermat 

2 
2 
2 
2 

1 
2 
2 
1 

1 
1 

-1 
-2 

(1.5) 

More will be said about these special cases in Section 4, 

2. RISING DIAGONAL ZIGZAG POLYNOMIALS 

The first few members of the polynomial set {Wn(x)} are, from (1.1) with (1.2): 

Table 1. Rising Diagonal Zigzag Polynomials for {Wn(x)} 

WQ{x) * K M * > 
/ Z2{x) 

W±(x) = kx / z^(x) 

W2{x) = {kx)2 + mh 

W3(x) = {kx)3+mh(kx) + m(kx) 

Wk(x) = (kx)1* + mh(kx)2 + 2m(kx)2 + m2h 

W5{x) = {kx)5 + mh{kx) 3 + 3m(kx)3 + 2m2h{kx) 

y 
m2(kx) 

Z7(x) 
/ ZB{x) 
y ZAX) 

( 2 . 1 ) 

Z i o W W6{x) = {kx)6 + mh{kxY + km(kxY + 3m2h{kx)2 + 3m2 {kx)2 + m3h 

W7(x) = (kx)7 + mh(kx)5 + 5m(kx)5 + ^m2h(kx)3 + 6m2 {kx)3 + 3m3h(kx) + m3 (kx)' 

WQ(x) = (kx)B + mh(kx)6 + 6m(kx)E- + 5m2h(kx)L> + 10m2 (kx) ** + 6m3h(kx) 2 + km3 (kx) 2 + mHh 
/ / / ' 

In Table 1, pair terms in columns 2 and 35 columns 4 and 59 . .., to form 
the rising diagonal generalized zigzag polynomials Zn(x) as indicated by the 
lines, beginning with ZQ(x) = h. For example, some of these generalized zigzag 
polynomials are: 

}(x) = h9 Z±(x) = kx, Z?(x) = (kx): Z3(x) = (kx)6 + mh, 

,Zh(x) (kx)1* + mk (kx) + m(kx). Z5(x) (kx)5 + mh(kx)2+ 2m(kx): (2.2) 

,Z6(x) = (kx)6 + mh(kx)3 + 3m(kx)3 + m2h9 

Previously, in [5], we mentioned that the virtue of the pairing technique 
by which the zigzag polynomials are produced is that specializations may be 
readily obtained. In the case of Table 1 this is achieved by the amalgamation 
of corresponding elements in appropriate pairs of columns. 

For example, the rising diagonal polynomials for Pell-Lucas polynomials 
(1.5) , already given in [5], are obtained by adding like terms in columns 2 and 
3, columns 4 and 5, ... (as appropriate), in Table 1 when h=29k=2,m=l3 
to give, for instance, the special expression for Z (x) in (2.2) as 

64^6 4- 40x3 + 2 

(which is the polynomial r (x) in [5])« 
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Correspondinglys for the Fermat polynomials (1.5) the rising diagonal poly-
nomial is x6 - IQjr3 + 8 (represented in [3] by R!(x))« 

Before proceeding to establish some properties of Zn(x)9 we introduce the 
companion polynomials Xn(x) 9 defined by 

Xn(x) — Zn(x) (2.3) 
h= 1 

i.e.9 Xn(x) are the rising diagonal zigzag polynomials of the set of polynomi-
als {Wn(x)} defined in (1.1) for which h = 1. 

Thuss if we consider the four special cases of Wn(23 kx; kx9 m) which are 
listed in (1.5) s yielding particular instances of the Zn(x) when In - 2 [the 
polynomials Yn(x) defined in (2.11) below)9 then the corresponding polynomials 
Xn (x) are associated with the four special cases of Wn(l9 kx; kxs m) corre-
sponding to those in (1.5)9 but with h = 1. These are the Fibonacci polynomi-
als , the Pell polynomials, the Chebyshev polynomials of the first kind, and. the 
companion Fermat polynomials ("Fermat polynomials of the first kindlf)9 respec-
tively. 

From (2.2) and (2.3) we have the expressions for the simplest polynomials 
Xn (x): 

(XQ(x) = 1, X±(x) = kx9 X2(x) = (kx)2, X3(x) = (kx)3 + m9 

}x^(x) = (kx)h + 2m(kx)9 X5(x) = (kx)5 + 3m(kx)2
9 (2.4) 

(x (x) = (kx)s + bm(kx)3 + m2
9 ... . 

The recurrence relation, the generating function9 and the explicit form 
for Xn(x) corresponding to (2.5)-(2.7), and the differential equations corre-
sponding to (2.8) and (2.9) which Xn(x) satisfy9 may all be readily derived by 
simple substitution. 

Following procedures already established in [5]9 we derive9 without much 
effort, the results exhibited below. 

RECURRENCE RELATION 

Zn(x) = kxZn_i(x) + mZn_3(x) (n > 3) (2.5) 

GENERATING FUNCTION 

oo 

E z . W t " " 1 = (tec + mhtz)[l - (kxt + mt3)]-1 = Z(x9 t) ( 2 .6 ) 
n = l 

EXPLICIT FORM 

M * ) = *» E ( n " L. " U)mi(kx)n~1-U + mh £ (n ~ 3 " U)mHkx)n-3-H 

DIFFERENTIAL EQUATIONS ( n ^ 3 ) ( 2 ' 7 ^ 

kt-^Z(x, t)- (kx + 3mt2)-^Z(x, t) = k{ (2h- 3)mt2 - kx}[l - (kxt + mt3)]-1 

(2 .8 ) 

kx-£zn + 2(x) + 2m-^Zn(x) = k{(n - DZn + 2(x) + 3Xn + 2(x)} (2 .9 ) 
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Alternative and equivalent forms exist in some of the above results. For 
example9 the bracketed factor on the right-hand side of (2.9) may be equally 
well expressed as 

(n + 2)Zn + 2(x) - 3m(h - l)Xn_1(x)B 

The equality of these two forms arises from the relationship 

Zn(x) = Xn(x) + m(h - l)Xn_3(x) (n > 3), (2.10) 

which may be readily demonstrated. Substitution of In = 1 in (2.10) produces 
Zn(x) - Xn(x), of course, in accord with (2.3). 

Another alternative expression occurs in the right-hand side of (2.8), 
which can be made to simplify to k{2Z(x9 t) - 3X(x5 t)} where the symbol 

X(xs t) = Z(xs t) 

by 

h= l 

Next, for completion, we introduce the related polynomial Yn(x), defined 

Yn(x) = Zn(x) 
l/z = 2 

i.e., the Yn(x) are the particular cases of Zn(x) occurring when h = 2. 
Expressions for some of the Yn(x) are, by (2.2) and (2.11): 

(2.11) 

(?0(x) = 2, Y1(x) = kx3 Y2(x) = (Joe)2, Y3 (x) = (fee)3 + 2m, 

O^te) = (fcr)1* + 3w(^) 9 Y5(a0 = (fee)5 + 477?(te)2, (2.12) 

(l6(^) = (kx)6 + 5m(kx)3 + 2m2
 s ..., 

whence, by (2.4) and (2.12), 

Yn(*) = *„(*) + mXn_3(x)» (2.13) 

Corresponding to (2.5)-(2.9), the recurrence relation, the generating 
function, and the explicit form for Yn(x), along with the differential equa-
tions satisfied by Yn(x), are easily deducible. 

Subtraction of (2.13) from (2.10) reveals that 

Zn(x) = Yn(x) + m(h - 2)Xn_3(x). (2.14) 

When h = 2, (2.14) leads to Zn(x) = Yn(x) in accord with (2.11). 

3. DESCENDING DIAGONAL ZIGZAG POLYNOMIALS 

Re-organize the material in Table 1, as indicated in Table 2 below, to produce 
the descending diagonal generalized zigzag polynomialst 
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Table 2. Descending Diagonal Zigzag Polynomials for {Wn(x)} 

(3.1) [ WQ OB) 

Wx On) 

W2 OB) 

^ 3 On) 

Wk OB) 

W5 OB) 

tf6 (ar) 

V7(ar) 

^ 8 <*> 

= (J<x)\+mhOix) + m(fec) \ 

= (kx)*<*-mh(kx)2 + 2m(kx)2s+m2h s20c) 

= (to)5
N+w^(to)3 + 3m(fcc)3

si-2OT2^(fcc) + m 2 ( t o ) \ 

= (to)6
N+w/zte)it + 4/72(to)^3m2^(to)2+ 3m2(fcc)2\J- m3h z3(x) 

= (fcc)7
N+^(to)5 + 5m(to)5

sf-4m2^(fcc)3+ 6m2 (kx)3^-3m3h(kx) + ms (kx) \ 

- (fcc)8
N+772^(to)6 + 6m(to)6^5m2^(to)l t+ 10w2 ( t o ) 1 ^ 6m*h(kB)2 + 4m3 (kx)\+mLih 

Designate these polynomials by zn(x). Then, as we learned from experience 
to expectj we derive the relatively simple expressions 

(zQ(x) = h9 z±(x) = to + mh9 z2(x) = (/or + mh)(kx + m), 

L f r ) = (to + mh) (kx + 77?) 29 s. (x) = (to + mh)(kx + m ) 3 , 
(3.2) 

J3 

and in general 

3M(a?) = (to + ?rzft)(to + m ) n _ 1 (ft = 1, 2, 3, . . . ) , (3.3) 

so that 

z (x) 

^r = kx + mh- (3-4) 

As result (3.3) is crucial9 we proceed to demonstrate its validity. 

Proof of (3-3): Temporarily, write Wn(x) = kxP(x) + mhQ(x) in (1.4), wherein 
P(x) and Q(x) stand for the appropriate summations. 

Let typical values of i in P(x) and Q(x) be represented by p and q respec-
tively ( p = 0 , 1, ..., n - 1; q = 0, 1, ..., n - 1). 

Each value of n in the Wn(x) giving rise to a specified zn(x) in Table 2 
requires a pair of values (p, g). 

For 

Wn(x), ^+1fo)» ^n + 2 ( ^ ) ' •••» ^ 2 r c - l ^ ' ^ n ^ ' ' 

these are 

(0, - ) , (1, 0), (2, 1), ..., (ft - 1, n - 2), (-, ft - 1), 

respectively, in which the dash (-) signifies nonoccurrence. 
Then, from (1.4), we have, after the necessary simplifications: 
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^ z + 

= (kx + rrih) (kx + m)n"1. 

The generating function for zn(x) (n > 0) is 

z(x9 £) = £ zn(x)tn~1 = (kx + mh)[l - (kx + m)t\ 
n = 1 

(3.5) 

Differential equations satisfied by the descending diagonal zigzag poly-
nomials are, from (3.3) and (3.5), 

and 

kt-7r-z(x9 t) - (kx -+- 777)-Tc— (x, t) + k -pj -—^r- z(x, t) = 0 
dt 6x (kx + mh) 

(kx + m)-rzn(x) - k(n - l)zn(x) - k(kx + m)n = 0. dx 

(3.6) 

(3.7) 

Just as we have the specialized forms (2.3) and (2.11) of Zn(x) occurring 
when h = 1 and h = 2 respectively, so we have the specialized forms of zn(x): 

xn(x) = zn(x) 
and 

h= 1 

and 

yn(x) = zn(x)\ 

Consequently, 

xn(x) - (kx + m)n 

y (x) = (kx + 2m) (kx + m)n 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

Result (3.7) may then, by (3.10), have the factor of k in the last term 
replaced by xn(x). 

Obviously, (3.10) and (3.11) together yield 

x„(x) kx + m 

and 

y (x) kx + 2m 

yn(x) = mxn_1(x) + xn(x). 

(3.12) 

(3.13) 

1986] 13 



GENERALIZED ZIGZAG POLYNOMIALS 

4. SPECIAL CASES 

Recall that our generalization in this paper relates specifically to the situ-
ations in which 

W1(x) = kx = the coefficient of Wn+1(x) in the definition (1.1). 

This leads to some interesting and familiar polynomials which have been listed 
in (1.5). 

Details concerning the results for the rising and descending diagonal 
polynomials cataloged in (1.5) are to be found in a chain of papers in the fol-
lowing sources: 

POLYNOMIAL REFERENCE 

(Lucas [2] 
Well-Lucas [5] f£ n 
\Chebyshev [1], [3], [10] ^ } 

{Fermat [3], [4] 

where the reference numbers are those in the bibliographical references below. 
Results for these specialized polynomials should be compared with the 

corresponding generalized results in this paper. Allowance musts however, be 
duly made on occasion for slight variations in notation, especially where these 
involve the initial conditions. 

These principles are now carefully illustrated for the case of the Fermat 
polynomials ("of the second kind") in (1.5) for which h = 2. The companion 
Fermat polynomials ("of the first kind") for which h = 1 will also be required. 
In the illustration, we verify that equation (2.8) above does indeed reduce to 
equation (39) in [4] for the Fermat polynomials. 

Illustration (Fermat Polynomials): For the Fermat polynomials we have, by sub-
stitution in (2.6), 

Y = Y(x, t) = (x - 4t2)[l- (xt - 2£3)]"1 

= Y1(x) + Y2(x)t + Y3(x)t2 + ••-, (4.2) 
and 

X = X(x9 t) = (x - 2t2)[l- (xt - It3)]'1 

= X1(x) + X2(x)t + Xs(x)t2 + ••', (4.3) 

using a simplified notation™ 
Now in [3] and [4] the following notation was employed [wherein the dash 

(') does not indicate differentiation]: 

R = [1- (xt - 2t3)]-1 - R±(x) + R2(x)t + R3(x)t2 + ••• = R(xs t); (4.4) 

i?> = (1 - 2t3)[l- (xt - 2t3)]"1 = 1 + R2(x)t + R3(x)t2 + " • E i?' (x, £). 
(4.5) 

But 

Xn(x) = Rn + 1(x) (4.6) 
and 

Yn(x) = R^ + 1(x). (4.7) 

14 [Feb. 



GENERALIZED ZIGZAG POLYNOMIALS 

Hence (4.2)-(4.7) give 

y - R ~ l 

X T~ (4-8) 
and 

J i?' - 1 
t 

Substitution in (2.8) from (1.5) for Fermat polynomials leads to 

t||- (x - 6t 2)|| = (-x - 2t2)[l- (xt - 2t3)]'1, 

i.e., by (4.9), 

K i f r - ^ - 1 ) - (x~ 6*2)fr = (~x - 2 t 2 ) t i - f e t - 2t 3 ) ] - i
9 

t ^ - (x - 6t2)^r = t(-x - 2t2)[l- (xt - It2)]-1 + i?» - 1 

= -6t2[l- (xt - 2t3)]"1 

= 3(i?' - i?) by (4.4) and (4.5). 

This is equation (39) in [4], which we set out to verify. 

In addition to the comments preceding the illustration, we remark that 
corresponding properties are developed for the polynomials Wn(2, px; px9 q) in 
[4], while in [6] and [9] analogous properties of the Gegenbauer polynomials, 
which are closely related to the Chebyshev polynomials, are investigated. 
(Brief mention is also made in [4] of the generalized Humbert polynomial of 
which the Gegenbauer and Chebyshev polynomials are particular cases.) 

Some interesting number sequences result if appropriate values of a; (e.g., 
x = -**>, x =1) are substituted in the various rising and descending diagonal 
polynomials discussed in the above papers. 

Thus, we have presented a summary and a synthesis of the basic thrust of 
the material in papers [l]-[6] and [9] by the author, along with that in [10] 
by Jaiswal. 

5- POSSIBLE EXTENSIONS 

One would like to be able to extend some of the ideas which have been applied 
in this paper to recurrence relations of higher order, particularly to the case 
of third-order recurrence relations .^^In order to produce thermost^worthwhile 
results, it would be necessary td^choose the most fertile initial polynomials 
(including constants) to generate the required polynomial set. 

Given such a fruitful selection of initial conditions, it might be possi-
ble to discover some geometrical results in three dimensions (Euclidean space) 
which would be analogous to, or extensions of, similar results about circles 
(in the Euclidean plane) by the author in other papers which are not lasted in 
the References. These investigations could be extended to three-dimensional 
surfaces corresponding to the conies in the plane. 

Hopefully (if tediously), such considerations could be further extended to 
hyper-surfaces in multi-dimensional Euclidean space. 

1986] 15 



GENERALIZED ZIGZAG POLYNOMIALS 

REFERENCES 

1. A. F. Horadam, "Polynomials Associated with Chebyshev Polynomials of the 
First Kind." The Fibonacci Quarterly 15, no. 3 (1977):255-257. 

2. A. F. Horadam. "Diagonal Functions." The Fibonacci Quarterly 16, no. 1 
(1978):33-36. 

3. A. F. Horadam. "Chebyshev and Fermat Polynomials for Diagonal Functions." 
The Fibonacci Quarterly 179 no. 4 (1979):328-333. 

4. A. F. Horadam. "Extensions of a Paper on Diagonal Functions." The Fibo-
nacci Quarterly 18, no. 1 (1980):3-8. 

5. A. F. Horadam. "Zigzag Polynomials." The Fibonacci Quarterly 23, no. 3 
(1985):214-220. 

6. A. F. Horadam. "Gegenbauer Polynomials Revisited," The Fibonacci Quar-
terly 23, no. 4 (1985):294-299, 307. 

7. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of 
Numbers." The Fibonacci Quarterly 3 (Oct. 1965):161-176. 

8. A. F. Horadam. "Special Properties of the Sequence Wn(as b; p, <?)." The 
Fibonacci Quarterly 5, no. 5 (1967):424-434. 

9. A. F. Horadam & S. Pethe. "Polynomials Associated with Gegenbauer Poly-
nomials." The Fibonacci Quarterly 19, no. 5 (1981):393-398. 

10. D. V. Jaiswal. "On Polynomials Related to Tchebicheff Polynomials of the 
Second Kind." The Fibonacci Quarterly 12, no. 3 (1974):263-265. 

•<>•<>• 

16 [Feb. 


