SUMMATION OF RECIPROCAL SERIES OF NUMERICAL FUNCTIONS OF SECOND ORDER

BLAGOJ S. POPOV
University "Kiril i Metodij," Skopje, Yugoslavia (Submitted September 1983)

This paper is an extension of the results of G. E. Bergum and V. E. Hoggatt, Jr. [1] concerning the problem of summation of reciprocals of products of Fibonacci and Lucas polynomials. The method used here will also allow us to generalize some formulas of R. Backstrom [2] related to sums of reciprocal series of Fibonacci and Lucas numbers.

The general numerical functions of second order which, following the notation of Horadam [3], we write as $\left\{w_{n}(a, b ; p, q)\right\}$ may be defined by

$$
\text { with } \begin{aligned}
w_{n} & =p w_{n-1}-q w_{n-2}, n \geqslant 2, w_{0}=a, w_{1}=b, \\
w_{n} & =w_{n}(a, b ; p, q),
\end{aligned}
$$

where a and b are arbitrary integers.
We are interested in the sequences

$$
\begin{equation*}
u_{n}=w_{n}(0,1 ; p, q) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{n}=w_{n}(2, p ; p, q) \tag{2}
\end{equation*}
$$

that can be expressed in the form

$$
\begin{equation*}
u_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, \quad n \geqslant 1 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{n}=\alpha^{n}+\beta^{n}, \quad n \geqslant 1, \tag{4}
\end{equation*}
$$

where
$\alpha=\left(p+\sqrt{p^{2}-4 q}\right) / 2, \beta=\left(p-\sqrt{p^{2}-4 q}\right) / 2, \alpha+\beta=p, \alpha \beta=q$,
and
$\alpha-\beta=\delta=\sqrt{\Delta}$.
Using (3) and (4), we obtain
$2 \alpha^{n}=v_{n}+\delta u_{n}$
and
$4 \alpha^{m+n}=v_{m} v_{n}+\Delta u_{m} u_{n}+\delta\left(u_{m} v_{n}+u_{m} v_{n}\right)$,
from which it follows that

$$
\begin{equation*}
u_{s+r} v_{s}-u_{s} v_{s+r}=2 q^{s} u_{r} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{s+r} v_{s}-\Delta u_{s} u_{s+r}=2 q^{s} v_{r} \tag{6}
\end{equation*}
$$

From relation (5), we have
$\frac{v_{s}}{u_{s}}-\frac{v_{s+r}}{u_{s+r}}=2 q^{s} \frac{u_{r}}{u_{s} u_{s+r}}$.
If we replace s here by $s, s+r, s+2 r, \ldots, s+(n-1) r$, successively, and add the results, we obtain, due to the telescoping effect,
$S_{n}(p, q ; r, s)=\sum_{k=1}^{n} \frac{q^{(k-1) r}}{u_{s}+(k-1) r u_{s}+k r}=\left(\frac{v_{s}}{u_{s}}-\frac{v_{s+n r}}{u_{s}+n r}\right) \frac{1}{2 q^{s} u_{r}}=\frac{u_{n r}}{u_{r} u_{s} u_{s}+n r}$.
Similarly, again using (5), we also have
$\sigma_{n}(p, q ; r, s)=\sum_{k=1}^{n} \frac{q^{(k-1) r}}{v_{s}+(k-1) r v_{s}+k r}=\left(\frac{u_{s+n r}}{v_{s}+n r}-\frac{u_{s}}{v_{s}}\right) \frac{1}{2 q^{s} u_{r}}=\frac{u_{n r}}{u_{r} v_{s} v_{s+n r}}$.
Because
$\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+r}}= \begin{cases}\alpha^{-r}, & |\beta / \alpha|<1 \\ \beta^{-r}, & |\alpha / \beta|<1,\end{cases}$
and
$\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n+r}}= \begin{cases}\alpha^{1-r} /\left(\alpha^{2}-q\right), & |\beta / \alpha|<1 \\ \beta^{1-r} /\left(\beta^{2}-q\right), & |\alpha / \beta|<1,\end{cases}$
we obtain
$S(p, q ; r, s)=\sum_{k=1}^{\infty} \frac{q^{(k-1) r}}{u_{s}+(k-1) r u_{s+k r}}= \begin{cases}\frac{\alpha^{-s}}{u_{r} u_{s}}, & |\beta / \alpha|<1 \\ \frac{\beta^{-s}}{u_{r} u_{s}}, & |\alpha / \beta|<1,\end{cases}$
$\sigma(p, q ; r, s)=\sum_{k=1}^{\infty} \frac{q^{(k-1) r}}{v_{s+(k-1) r} v_{s}+k r}= \begin{cases}\frac{\alpha^{1-s}}{\alpha^{2}-q} \frac{1}{u_{r} v_{s}}, & |\beta / \alpha|<1 \\ \frac{\beta^{1-s}}{\beta^{2}-q} \frac{1}{u_{r} v_{s}}, & |\alpha / \beta|<1 .\end{cases}$
In particular, with $r=s$, we have
$S(p, q ; r, r)= \begin{cases}\alpha^{r-2}\left(\frac{\alpha^{2}-q}{\alpha^{2 r}-q^{r}}\right)^{2}, & |\beta / \alpha|<1 \\ \beta^{r-2}\left(\frac{\beta^{2}-q}{\beta^{2 r}-q^{r}}\right)^{2}, & |\alpha / \beta|<1,\end{cases}$
and

$$
\sigma(p, q ; r, r)= \begin{cases}\alpha^{r} /\left(\alpha^{4 r}-q^{2 r}\right), & |\beta / \alpha|<1 \tag{12}\\ \beta^{r} /\left(\beta^{4 r}-q^{2 r}\right), & |\alpha / \beta|<1\end{cases}
$$

3. SPECIAL CASES

It is not difficult to obtain the formulas of Bergum and Hoggatt from (9) and (10). Indeed, if we let $p=x$ and $q=-1$ in (1) and (2), these relations define the sequences of the Fibonacci polynomials $\left\{F_{k}(x)\right\}_{k=1}^{\infty}$ and the Lucas polynomials $\left\{L_{k}(x)\right\}_{k=1}^{\infty}$. In this case,

$$
\alpha(x)=\left(x+\sqrt{x^{2}+4}\right) / 2, \quad \beta(x)=\left(x-\sqrt{x^{2}+4}\right) / 2,
$$

where

$$
\begin{aligned}
& -1<\alpha(x)<1 \quad \text { and } \quad \beta(x)>1 \quad \text { when } x>0, \\
& 0<\alpha(x)<1 \quad \text { and } \quad \beta(x)<1 \quad \text { when } x<0 .
\end{aligned}
$$

Hence, (9) and (10) become

$$
S(x,-1 ; r, s)=\lim _{n \rightarrow \infty} S_{n}(x,-1 ; r, s)= \begin{cases}\frac{1}{\alpha^{s}(x)} \frac{1}{F_{r}(x) F_{s}(x)}, & x>0 \tag{13}\\ \frac{1}{\beta^{s}(x)} \frac{1}{F_{r}(x) F_{s}(x)}, & x<0\end{cases}
$$

and

$$
\sigma(x,-1 ; x, s)=\lim _{n \rightarrow \infty} \sigma_{n}(x,-1 ; r, s)= \begin{cases}\frac{\alpha^{1-s}(x)}{1+\alpha^{2}(x)} \frac{1}{F_{r}(x) L_{s}(x)}, & x>0 \tag{14}\\ \frac{\beta^{1-s}(x)}{1+\beta^{2}(x)} \frac{1}{F_{r}(x) L_{s}(x)}, & x<0\end{cases}
$$

Comparing the results of Bergum and Hoggatt [1, p. 149, formulas (9) and (17)] with our (13) and (14) above, we find that
$U(q, a, b, x)=(-1)^{b} F_{k}(x) F_{q}(x) S(x,-1 ; q, b)$
and
$V(q, a, b, x)=(-1)^{b} F_{k}(x) F_{q}(x)\left(x^{2}+4\right) \sigma(x,-1 ; q, b)$,
when $q=b-a+k$.
As particular cases, we give:

$$
S(x,-1 ; 2,2)=\sum_{k=1}^{\infty} \frac{1}{F_{2 k}(x) F_{2(k+1)}(x)}= \begin{cases}\beta^{2}(x) / x^{2}, & x>0 \\ \alpha^{2}(x) / x^{2}, & x<0\end{cases}
$$

and

$$
\sigma(x,-1 ; 2,2)=\sum_{k=1}^{\infty} \frac{1}{L_{2 k}(x) L_{2(k+1)}(x)}= \begin{cases}\alpha^{2}(x) /\left(\alpha^{8}(x)-1\right), & x>0 \\ \beta^{2}(x) /\left(\beta^{8}(x)-1\right), & x<0\end{cases}
$$

4

Using the relations (5) and (6) with $u_{-n}=-q^{-n} u_{n}$ and $v_{-n}=q^{-n} v_{n}$, we have $v_{2 r}-q^{r-s} v_{2 s}=\Delta u_{r-s} u_{r+s}$.

Then, by the method used to obtain (7), we have

$$
\begin{equation*}
\Delta \sum_{k=0}^{n} \frac{q^{k r}}{v_{(2 k+1) r+2 s}-q^{s+k r} v_{r}}=\frac{1}{u_{s} u_{r}} \frac{u_{(n+1) r}}{u_{s}+(n+1) r} \tag{17}
\end{equation*}
$$

so that

$$
\begin{aligned}
& \Delta \sum_{k=0}^{\infty} \frac{q^{s+k r}}{v_{(2 k+1) r+2 s}-q^{s+k r} v_{r}}= \begin{cases}\frac{\beta^{s}}{u_{r} u_{s}}, & |\beta / \alpha|<1 \\
\frac{\alpha^{s}}{u_{r} u_{s}}, & |\alpha / \beta|<1\end{cases} \\
& \text { Similar1y, from } \\
& v_{2 r}+q^{r-s} v_{2 s}=v_{r-s} v_{r+s}
\end{aligned}
$$

using (8) we obtain

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{q^{k r}}{v_{(2 k+1) r+2 s}+q^{s+k r} v_{r}}=\frac{1}{u_{r} v} \frac{u_{(n+1) r}}{v_{s+(n+1) r}} \tag{19}
\end{equation*}
$$

or

$$
\sum_{k=0}^{\infty} \frac{q^{s+k r}}{v_{(2 k+1) r+2 s}+q^{s+k r} v_{r}}= \begin{cases}\beta^{s+1} /\left(q-\beta^{r}\right) u_{r} v_{s}, & |\beta / \alpha|<1 \tag{20}\\ \alpha^{s+1} /\left(q-\alpha^{r}\right) u_{r} v_{s}, & |\alpha / \beta|<1\end{cases}
$$

In particular, if we put $p=-q=1$ in (17)-(20), we obtain the formulas of Backstrom [2] concerning the Lucas numbers. These are

$$
\sum_{k=0}^{n} \frac{1}{L_{(2 k+1) r+2 s}+L_{r}}= \begin{cases}\frac{1}{5 F_{r} F_{s}} \frac{F_{(n+1) r}}{F_{(n+1) r+s}}, & s \text { odd } \\ \frac{1}{F_{r} L_{s}} \frac{F_{(n+1) r}}{L_{(n+1) r+z}}, & s \text { even }\end{cases}
$$

$$
\sum_{k=0}^{\infty} \frac{1}{L_{(2 k+1) r+2 s}+L_{r}}= \begin{cases}\left(\frac{-1+\sqrt{5}}{2}\right)^{s} \frac{1}{5 F_{r} F_{s}}, & s \text { odd } \\ \left(\frac{\sqrt{5}-1}{2}\right)^{s} \frac{1}{5 F_{r} L_{s}}, & s \text { even }\end{cases}
$$

where r is an even integer satisfying $-r \leqslant 2 s \leqslant r-2$.
We notice that, from

$$
u_{r}^{2}-q^{r-s} u_{s}^{2}=u_{r-s} u_{r+s},
$$

it follows that

$$
\sum_{k=1}^{n} \frac{q^{2(n-1) r}}{u_{(2 k-1) r+s}^{2}-q^{s+2 k r} u_{r}^{2}}=S_{n}(p, q ; 2 r, s)
$$

and

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{q^{2(n-1) r}}{u_{(2 k-1) r+s}^{2}-q^{s+2 k r} u_{r}^{2}}= \begin{cases}\beta^{s} / u_{2 r} u_{s}, & |\beta / \alpha|<1, \\
\alpha^{s} / u_{2 r} u_{s}, & |\alpha / \beta|<1\end{cases} \\
& \text { Similarly, } \\
& \Delta \sum_{k=1}^{n} \frac{q^{2(k-1) r}}{v_{(2 k-1) r+s}^{2}-q^{s+2 k r} v_{r}^{2}}=S_{n}(p, q ; 2 r, s) .
\end{aligned}
$$

ACKNOWLEDGMENT

The author wishes to thank the referee for his comments and suggestions which have improved the presentation of this paper.

REFERENCES

1. G. E. Bergum \& V. E. Hoggatt, Jr. "Infinite Series with Fibonacci and Lucas Polynomials." The Fibonacci Quarterly 17, no. 2 (1970):147-151.
2. R. P. Backstrom. "On Reciprocal Series Related to Fibonacci Numbers with Subscripts in Arithmetic Progression." The Fibonacci Quarterly 19, no. 1 (1981):14-21.
3. A. F. Horadam. "Generating Functions for Powers of Certain Generalised Sequences of Numbers." Duke Math. J. 32, no. 3 (1956):437-446.
4. A. F. Horadam. "A Generalised Fibonacci Sequence." Amer. Math. Monthly 68, no. 5 (1961):455-459.
5. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." The Fibonacci Quarterly 3 (Oct. 1965):161-177.
