W. AIELLO, G. E. HARDY, and M. V. SUBBARAO The University of Alberta, Edmonton, Alberta, Canada T6G 2G1 (Submitted April 1985)

Dedicated to the memory of Robert Arnold Smith

1. INTRODUCTION

By an exponential divisor (or e-divisor) of a positive integer N > 1 with canonical form

$$N = p_1^{a_1} \dots p_r^{a_r},$$

we mean a divisor d of N of the form

$$d = p_1^{b_1} \dots p_r^{b_r}, b_i | a_i, i = 1, \dots, r.$$

The sum of such divisors of N is denoted by $\sigma^{(e)}(N)$, and the number of such divisors by $\tau^{(e)}(N)$. By convention, 1 is an exponential divisor of itself, so that $\sigma^{(e)}(1) = 1$. The functions $\tau^{(e)}(N)$ and $\sigma^{(e)}(N)$ were introduced in [1] and have been studied in [1] and [2].

An integer N is said to be e-perfect whenever $\sigma^{(e)}(N) = 2N$, and e-multiperfect when $\sigma^{(e)}(N) = kN$ for an integer k > 2. In [1] and [2], several examples of e-perfect numbers are given. It is also proved in [2] that all e-perfect and all e-multiperfect numbers are even.

Several unsolved problems are listed in [2], and one of them is whether or not there exists an e-multiperfect number. In this paper, we show that if such a number exists, it must indeed be very, very large.

2. NOTATION AND SOME LEMMAS

In all that follows, the positive integer N is assumed to be an *e*-multiperfect number, so that

$$\sigma^{(e)}(N) = kN \text{ for some integer } k > 2.$$
(2.1)

Note that if n is a square-free integer, then $\sigma^{(e)}(n) = n$, so that if (n, N) = 1, then Nn is also *e*-multiperfect. Hence, we assume (as we may) in the future that $\mathbb N$ is powerful. Also note here that we have used the fact that $\boldsymbol{\sigma}^{(e)}$ is a multiplicative function.

Write

$$N = 2^{h} (q_{1}^{a_{1}} \dots q_{s}^{a_{s}}) (p_{1}^{b_{1}} \dots p_{t}^{b_{t}}), \qquad (2.2)$$

where the p's and q's are distinct primes, and each a_i is a non-square integer ≥ 2 , and each b_j is a square integer ≥ 4 . It follows then that each $\sigma^{(e)}(q_i^{a_i})$ is even and each $\sigma^{(e)}(p_j^{b_j})$ is odd. Let $k = 2^{\omega}M$, where M is odd and $\omega \ge 0$.

1987]

Lemma 2.3: \mathbb{N} is even, i.e., $h \ge 2$.

This is a consequence of Theorem 2.2 of [2].

Lemma 2.4: $s < \omega + h$.

Proof: The relation $\sigma^{(e)}(N) = kN$ gives

$$\sigma^{(e)}(2^{h}) \left[\prod_{i=1}^{s} \sigma^{(e)}(q_{i}^{a_{i}}) \right] \left[\prod_{j=1}^{t} \sigma^{(e)}(p_{j}^{b_{j}}) \right] = 2^{\omega+h} \mathcal{M}(q_{1}^{a_{1}} \cdots q_{s}^{a_{s}}) (p_{1}^{b_{1}} \cdots p_{t}^{b_{t}}).$$

Since the only even factors on the left side are $\sigma^{(e)}(q_1^{a_1})$, ..., $\sigma^{(e)}(q_s^{a_s})$, and since $2 | \sigma^{(e)}(2^h)$, the result follows.

In what follows, the letter p represents a prime.

Lemma 2.5:

$$\prod_{p \neq 2, q_1, \dots, q_s} \left(1 + \frac{1}{p^2} + \frac{1}{p^3} \right) < (1.27885) \left(1 - \frac{1}{q_1^2} \right) \cdots \left(1 - \frac{1}{q_s^2} \right).$$

Remark: This is a stronger form of Lemma 2.1 of [2], where a similar result is proved with the multiplicative constant on the right being $27/16 \approx 1.6875$. For our present purpose, we need the above stronger result.

Proof of Lemma 2.5:

$$\begin{split} &\prod_{p \neq 2, q_1, \dots, q_s} \left(1 + \frac{1}{p^2} + \frac{1}{p^3} \right) <_{p \neq 2, q_1, \dots, q_s} \left(1 + \frac{1}{p^2} \right) \left(1 + \frac{1}{p^3} \right) \\ &= \prod_{p \neq 2, q_1, \dots, q_s} \left(1 + \frac{1}{p^2} \right)^{-1} \left(1 - \frac{1}{p^4} \right) \left(1 + \frac{1}{p^3} \right) \\ &< \left[\zeta(2) \left(1 - \frac{1}{2^2} \right) \left(1 - \frac{1}{q_1^2} \right) \cdots \left(1 - \frac{1}{q_s^2} \right) \right] \\ & \cdot \left[\zeta(4) \left(1 - \frac{1}{2^4} \right) \left(1 - \frac{1}{q_1^4} \right) \cdots \left(1 - \frac{1}{q_s^4} \right) \right]^{-1} \\ & \cdot \left[\zeta(3) \left(1 - \frac{1}{2^3} \right) \left(1 - \frac{1}{q_1^3} \right) \cdots \left(1 - \frac{1}{q_s^3} \right) \right] \\ &< \frac{7}{10} \quad \frac{\zeta(2) \zeta(3)}{\zeta(4)} \left(1 - \frac{1}{q_1^2} \right) \cdots \left(1 - \frac{1}{q_s^2} \right), \end{split}$$

on utilizing the result that

$$\left[1 - \frac{1}{q_j^3}\right] \left[1 - \frac{1}{q_j^4}\right]^{-1} < 1, \ j = 1, \ \dots, \ s.$$

Using

 $\zeta(2) < 1.64494, \zeta(3) < 1.20206, and \zeta(4) < 1.08232$

([3], p. 811), we obtain the proof of the lemma.

66

[Feb.

Lemma 2.6:

$$\frac{k}{1.27885} \leq \left(1 + \frac{1}{2^{(h-2)/2}}\right) \left[\left(1 + \frac{1}{q_1}\right) \left(1 - \frac{1}{q_1^2}\right) \cdots \left(1 + \frac{1}{q_s}\right) \left(1 - \frac{1}{q_s^2}\right) \right],$$

where $1 + 2^{(h-2)/2}$ is to be taken as $1 + \frac{1}{2}$ for h = 2, 3.

Proof:

$$k = \frac{\sigma^{(e)}(N)}{N} = \frac{\sigma^{(e)}(2^{h})}{2^{h}} \cdot \left[\prod_{i=1}^{r} \frac{\sigma^{(e)}(p_{i}^{a_{i}})}{p_{i}^{a_{i}}}\right] \left[\prod_{j=1}^{s} \frac{\sigma^{(e)}(q_{j}^{b_{j}})}{q_{j}^{b_{j}}}\right].$$

We note first that, for any prime p, we have

$$\frac{\sigma^{(e)}(p^m)}{p^m} \quad \frac{\sigma^{(e)}(p^2)}{p^2} = 1 + \frac{1}{p}, \ m = 2, \ 3, \ \dots$$

Also, for $m \ge 2$,

$$\frac{\sigma^{(e)}(p^m)}{p^m} \leq (p^m + p^{m/2} + p^{m/3} + \dots + p)/p^m$$
$$< 1 + \frac{1}{p^{m/2}} + \frac{1}{p^{m/2+1}} + \frac{1}{p^{m/2+2}} + \dots$$
$$= 1 + \frac{1}{p^{(m/2-1)}(p-1)}.$$

Thus,

$$\frac{\sigma^{(e)}(2^h)}{2^h} < 1 + \frac{1}{2^{(h/2)-1}} \text{ for } h \ge 4; \ \frac{\sigma^{(e)}(2^h)}{2^h} \le 1 + \frac{1}{2}, \ h = 2, \ 3,$$

and

$$\frac{\sigma^{(e)}(q_j^{b_j})}{q_j^{b_j}} \le 1 + \frac{1}{q_j}, \ j = 1, \ 2, \ \dots, \ s.$$

Next,

$$\prod_{i=1}^{r} \left[\frac{\sigma^{(e)}(p_{i}^{a_{i}})}{p_{i}^{b_{i}}} \right] \leq \prod_{i=1}^{r} \frac{\sigma^{(e)}(p_{i}^{4})}{p_{i}^{4}} = \prod_{i=1}^{r} \left(1 + \frac{1}{p_{i}^{2}} + \frac{1}{p_{i}^{3}} \right)$$
$$\leq \prod_{p \neq 2, q_{1}, \dots, q_{s}} \left(1 + \frac{1}{p^{2}} + \frac{1}{p^{3}} \right)$$
$$< (1.27885) \left(1 - \frac{1}{q^{2}} \right) \cdots \left(1 - \frac{1}{q_{s}^{2}} \right),$$

on using Lemma 2.5. The result (2.6) now follows.

1987]

3. MAIN RESULTS

Given $k \ge 3$, we shall estimate h and s as functions of k and show that

$$\lim_{k \to \infty} h = \lim_{k \to \infty} s = \infty.$$
(3.1)

These follow from the results $\omega \leq \log k/\log 2$ and

$$h \ge s - \omega \ge [(1 - \log(32/27)/\log 2)\log k - \log((1.27885)(1.5))]/\log(32.27).$$
(3.2)

To obtain (3.2), we utilize Lemmas 2.4 and 2.6. Thus,

$$\frac{k}{1.27885} \leq \left(1 + \frac{1}{2}\right) \prod_{i=1}^{s} \left(1 + \frac{1}{q_i}\right) \left(1 - \frac{1}{q_i^2}\right).$$
(3.3)

If we take logarithms of both sides and use the estimate that, for all i,

$$\left(1 + \frac{1}{q_i}\right) \left(1 - \frac{1}{q_i^2}\right) \le \left(1 + \frac{1}{3}\right) \left(1 - \frac{1}{3^2}\right) = \frac{32}{27}, \qquad (3.4)$$

then, after carrying out routine calculations, we get (3.2) from (3.3).

Actually, the estimate for h in (3.2) can be vastly improved as shown below.

Let $H_0 = H_0(k)$ be the smallest value of h for which N, given by (2.2), is a solution of (2.1). Then we shall show that H_0 increases exponentially with k. In fact, there is a function H(k) such that $H_0(k) \ge H(k)$ and $\log \log H \sim \log k$ as $k \to \infty$.

Let $Q_1 = 3$, $Q_2 = 5$,... be the sequence of odd primes. From (3.2), we have

$$\frac{k}{1.27885} \leq \left(1 + \frac{1}{2^{(H-2)/2}}\right) \prod_{i=1}^{H+\omega} \left(1 + \frac{1}{Q_i}\right) \left(1 - \frac{1}{Q_i^2}\right)$$
(3.5)

Now let H be the smallest integer satisfying (3.5), so

$$\left(1 + \frac{1}{2^{(H-3)/2}}\right)^{H-1+\omega} \left(1 + \frac{1}{Q_i}\right) \left(1 - \frac{1}{Q_i^2}\right) < \frac{k}{1.27885}$$

$$\leq \left(1 + \frac{1}{2^{(H-2)/2}}\right)^{H+\omega} \left(1 + \frac{1}{Q_i}\right) \left(1 - \frac{1}{Q_i^2}\right).$$

$$(3.6)$$

It is clear that $H_0(k) \ge H(k)$.

Theorem 3.7: log log $H \sim \log k \quad (k \rightarrow \infty)$.

Proof: Taking logarithms and letting $k \rightarrow \infty$ and noting that

$$\log(1 + 2^{-(H-2)/2}) \leq \log(1 + \frac{1}{2}) = 0(1) \quad (H \to \infty),$$

and similarly for $\log(1 + 2^{-(H-3)/2})$, and using the result

$$\sum_{i=1}^{t} \log\left(1 - \frac{1}{Q_i^2}\right) = 0(1), \ t \to \infty,$$

we get

[Feb.

68

.

$$\sum_{i=1}^{H+\omega-1} \log\left(1 + \frac{1}{Q_i}\right) + 0(1) \le \log k + 0(1)$$

$$\le \sum_{i=1}^{H+\omega} \log\left(1 + \frac{1}{Q_i}\right) + 0(1).$$
(3.8)

Note that as $k \to \infty$, $H \to \infty$, and

$$\sum_{i=1}^{H} \log\left(1 + \frac{1}{Q_i}\right) \sim \log \log H \quad (H \to \infty).$$

Thus, (3.8) gives

 $\log \log(H + \omega) \sim \log k \ (k \to \infty).$

Since $\omega = 0$ (log k), this gives

$$\log \log H \sim \log k \ (k \to \infty). \tag{3.9}$$

Explicit Lower Bounds for \mathbb{N}

We shall now give some explicit lower bounds for N(k), the smallest value of N for given values of k that satisfies (2.1).

First, we note the explicit values of H = H(k) for certain small values of k.

Lemma 3.10:

(i)	H(3) = 4	4	(iv)	H(6)	=	426
(;;)	H(4) = 4	41	(v)	H(7)	=	1382
(;;;)	H(5) = 3	135	(vi)	H(8)	=	4553

Proof: We recall the definition of H and utilize its characterization given by (3.6). Then a computer calculation gives the above results.

Lemma 3.11: Let P(x) denote the product of all the primes not exceeding x. Then

- (i) $\log P(x) > .84x$ for $x \ge 101$,
- (ii) $\log P(x) > .98x$ for $x \ge 7481$.

This follows from Theorem 10 of the estimates given by Rosser and Schoen-feld [4].

Of course, the Prime Number Theorem gives the result that $\log P(x) \sim x$.

Theorem 3.12:

N(3)	>	$2 \cdot 10^{7}$		(3.13)
N(4)	>	10 ⁸⁵		(3.14)
N(5)	>	10 ³²⁰		(3.15)
N(6)	>	10 ¹²¹⁰ ;	also $N(k) > 10^{1210}$ for all even k for which	(3.16)
			$\omega = \omega(k) = 1.$	

1987]

69

$$N(k) > 10^{5270}$$
 for all odd $k \ge 7$. (3.17)

$$N(k) > 10^{19884}$$
 for all even $k \ge 8$, for which $\omega = \omega(k) = 3$. (3.18)

Proof: We shall use the results of Lemmas 3.10 and 3.11. We shall illustrate the proof by considering only a few cases. Let

$$G(H, u) = \left(1 + \frac{1}{2^{(H-2)/2}}\right) \prod_{i=1}^{u} \left(1 + \frac{1}{Q_i}\right) \left(1 - \frac{1}{Q_i^2}\right).$$
(3.19)

(i) k = 3: Since H(3) = 4, by Lemma 2.5 and (3.6), we should have

 $G(3, u) \ge 3/1.27885.$

A computer run shows that the smallest value of u for which this inequality holds is u = 4. Hence, $s \ge 4$ and

$$N(3) \ge 2^{4} \prod_{i=1}^{4} Q^{2} = 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11^{2} = 21344400 > 2 \cdot 10^{7}.$$

(ii) k = 7: Since $H(7) = 1382$, $(H - 2)/2 = 691$. We should then have $G(7, u) \ge 7/1.27885.$

A computer run shows that the smallest u that satisfies this is u = 1382. Thus,

$$N(7) \ge 2^{1382} \prod_{i=1}^{1382} Q_i^2 > 10^{5270}$$

on using Lemma 3.11.

(iii)
$$\underline{k \text{ odd} > 7}$$
: Then $H(k)$ satisfies
 $k/(1.27885) < \left(1 + \frac{1}{2^{(H(k)-2)/2}}\right) \prod_{i=1}^{H(k)} \left(1 + \frac{1}{Q_i}\right) \left(1 - \frac{1}{Q_i^2}\right).$

Since 7/1.27885 $\leq k/1.27885$, we have H(k) > H(7) = 1382. Hence, the value of u that satisfies

G(k, u) > k/1.27885

is >1382, and $N(k) > 10^{5270}$ for all odd k > 7.

(iv) $\frac{k=8}{\text{and}}$: We have $\omega = 3$ and H = H(8) = 4553. Thus, (H - 2)/2 = 2276.5

$$\frac{8}{1.27885} \leq \left(1 + \frac{1}{2^{2276\cdot 5}}\right) \prod_{i=1}^{4553} \left(1 + \frac{1}{Q_i}\right) \left(1 - \frac{1}{Q_i^2}\right).$$

A computer run shows that the smallest value of u for which

 $G(8, u) \ge 8/1.27885$

is u = 4556. Hence, $s \ge 4556$ and

[Feb.

$$\mathbb{N}(8) \ge 2^{4553} \prod_{i=1}^{4556} Q^2 > 10^{19884}$$
.

on using Lemma 3.11 and a computer calculation.

(v) <u>k even and > 8 and $\omega = \omega(k) = 3$ </u>; We have

$$\frac{8}{1.27885} < \frac{k}{1.27885} \leqslant \left(1 + \frac{1}{2^{(H(k)-2)/2}}\right)^{H(k)+\omega} \left(1 + \frac{1}{Q_i}\right) \left(1 - \frac{1}{Q_i^2}\right)$$
$$= \left(1 + \frac{1}{2^{(H(k)-2)/2}}\right)^{H(k)+3} \left(1 + \frac{1}{Q_i}\right) \left(1 - \frac{1}{Q_i^2}\right).$$

From this, it is clear that H(k) > H(8) for all even k for which $\omega = \omega(k) = 3$.

Remark 3.20: Though we are unable to prove this, it is very likely that H(k) increases monotonically with k for all $k \ge 3$. The numerical evidence supports this; therefore, we make the following conjectures.

Conjecture 3.21: H(k) and $H_0(k)$ are monotonic functions of k for $k \ge 3$.

Conjecture 3.22: There are no *e*-multiperferfect numbers.

ACKNOWLEDGMENTS

We thank Dr. J. Fabrykowski for his helpful comments on our manuscript, and the referee for his useful suggestions.

REFERENCES

- 1. M. V. Subbarao. "On Some Arithmetic Convolutions." The Theory of Arithmetic Functions. Lecture Notes #251. New York: Springer-Verlag, 1972.
- 2. E. G. Straus & M. V. Subbarao. "On Exponential Divisors." Duke Math. J. 4 (1974):465-471.
- 3. Handbook of Mathematical Functions. Washington, D.C.: National Bureau of Standards, 1965.
- J. B. Rosser & L. Schoenfeld. "Approximate Formulas for Some Functions of Prime Numbers." *Illinois J. Math.* 6 (1962):64-94.
