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DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

F « = F , , + F*. > F« = 05 F, = 1 n+ 2 n+1 n s 0 ' 1 
and 

Ln + 2 = Ln+1 + Ln> L0 = 2> L l = l ' 

PROBLEMS PROPOSED IN THIS ISSUE 

B-586 Proposed by Heinz-Jurgen Seiffert, Student, Berlin, Germany 
n 

Show that 5 X X F _ 7 = (n + l)F o + (n + 3)F . 
4—f k+ 1 n+ 1- k n+ 3 v ' n+ 1 

k = 0 

B-587 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 
Let y = £ Fnxn/n\ and 2 = £ Lnxn/n\ . 

n = 0 « = 0 

Show that y!t - y ! + y and 3" = 2 ' + 3. 

B-588 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

Find the y and z of Problem B-587 in closed form. 

B-589 Proposed by Herta T. Freitag, Roanoke, VA 

The number N = 0434782608695652173913 has the property that the digits of 
KN are a permutation of the digits of N for K = 1, 2S . . . 9 m. Determine the 
largest such m. 

B-590 Proposed by Herta T. Frietag, Roanoke, VA 

Generalize on Problem B-589 and describe a method for predicting the left-
most digit of KN. 
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B-591 Proposed by Mihaly Bencze, Jud. Brasa, Romania 

Let F{x) = 1 + Y* ctnxn with each an in {09 l}. 
n = 1 

Prove that f(x) 4 0 for all x in -l/a < x < 1/a, where a = (1 + V/5)/2. 

SOLUTIONS 

Constant Modulo 5 

B-562 Proposed by Herta T. Freitag, Roanoke, VA 

Let cn be the integer in {05 1, 2, 3, 4} such that 

on = ̂ 2n + [w/2] - [(n - l)/2] (mod 5), 

where [x] is the greatest integer in x. Determine cn as a function of n. 

Solution by J. Suck, Essen, Germany 

cn = 3 for all n <E Z. From the very definition, we see that Ln ~ 2, 1, 3, 
4 (mod 5) for n = 0, 1, 2, 35 respectively, (mod 4). Hence 

2 for n even 
3 for n odd. 

But for n even, 

2 

and for n odd, 

[n 

n _ t 
2 2 i - t ? - 1 ) - 1 -

2J [ 2 J 2 
n - 1 0. 

So, 

£2* + 
"n" 
_2_ 

[n - r 
2 

(2+1, n 
(3+0, n 

even f v x 
,, = 3 (mod 5), odd 

Also solved 2?y Paul 5. Bruckman, Laszlo Cseh, L.A. G. Dresel, Piero Filipponi, 
C. Georghiou, L. Kuipers, J. Z. Lee & J. S. Lee, Jmre Merenyi, Bob Prielipp, 
Heinz-Jurgen Seiffert, and the proposer. 

2 of 3 Are Multspies of h 

B-563 Proposed by Herta T. Freitag, Roanoke, VA 

n 
Let Sn = £ ^2i-hi^2i-z' F o r w n i c n values of rc is 5n exactly divisible 

by 4? i = 1 

Solution by J. Suck, Essen, Germany 

From the definition of the Lucas numbers we see that If k = 0, 1, 2, 3, 4, 
5 (mod 6), then Lk = 2, 1,3,0,3,3 (mod 4), respectively. Hence, if i E 1, 
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2, 0 (mod 3), then L2i + 1L2i_2 = 0-2 = 0, 3 - 3 = 1 , 1-3 = 3 (mod 4), respec-
tively, This, of course, implies that Sn = 0 (mod 4) if and only if n = 1 or 
0 (mod 3) and Sn = 1 otherwise. 

Also solved by Paul S. Bruckman, Laszlo Cseh, L.A. G. Dresel, Plero Fllipponi, 
C. Georghiou, L. Kuipers, J. Z. Lee & J, S> Lee, Bob Prielipp, Heinz-Jurgen 
Seiffert, and the proposer. 

Summing [aFk] 

B-564 Proposed by Laszlo Cseh, Cluj, Romania 

Let a ~ (1 + v5)/2 and [#] be the greatest integer in x* Prove that 

[oFJ + [oF2] + -.. + [oFn] = Fn+3 - [(n + 4)/2]. 

Solution by Paul S. Bruckman, Fair Oaks, CA 

First we note that aFk = 5"1/2 (ak + 1 - bk+1 + bk (b - a))= Fk+1 - bk. Since 
-1 < b < 0, thus [aF2k] = F2k+1 - 1, [aF2k + 1] = F2k+2, or [aFk] = Fk + 1 - ek, 
where ek is the characteristic function of the even integers. 

n 
Let Sn = J2 [aFk ] . Then 

fc = l 

Sn = t (Fk+1 - ek) = t (Fk+3 ~ ** + 2> ~ \f\ = Fn + s - F3 - [fl 
2> = 1 fc = 1 L ^ - J L ^-J 

Q.E.D. 

fc = l k = 1 
fn + 4 

= F 
n+ 3 

Also solved by Piero Filipponi, C. Georghiou, L. Kuipers, J. Z. Lee <£ J. 5. Lee, 
Jmre Merenyi, Bob Prielipp, Heinz-Jurgen Seiffert, J. Suck, and the proposer. 

Fibonacci-Pel 1 Products Summed 

B-565 Proposed by Heinz-Jurgen Seiffert, Student, Berlin, Germany 

Let P , P , . . . be the sequence of Pell numbers defined by PQ = 09 P1= 19 
and Pn = 2Pn° x ^Pn_2 for n £ {2, 3, . ..}. Show that 

9 X > ^ = Pn + 2Fn + P n + 1 F n + 2 + PnFn-l ~ Fn-lFn+l' 

k'O 

Solution by Paul S. Bruckman, Fair Oaks, CA 

Let Rn denote the r igh t member in the statement of the problem. Then 

R„ • (2P„ + 1 + Pn)Fn + Pn + 1(Fn+1 + Fn) + Pn(Fn + 1 ~ Fn) 

after simplification, this reduces to 

Rn = 3(Pn + 1Fn 4- PnFn + 1)« (1) 
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Therefore, 

A/?„ = Rn + 1 - Rn = 3(Pn + 2Fn + 1 - Pn + 1Pn + Pn + 1Fn + 2 - PnFn + l) 

= 3{(2Pn + 1 + Pn)Fn + l - Pn + 1Fn + Pn + 1(Fn + 1 + Fn) - PnFn+1], 

which reduces to 

Mn = 9Pn + 1Fn + 1. (2) 

On the other hand, let Sn denote the left member in the statement of the prob-
lem. Clearly, 

ASn = 9Pn+1Fn+1. (3) 

Since tSRn = ASn, this implies that 

Rn = Sn + e, n = 0, 1, 2, ..., (4) 

for some constant c (independent of n). Since P = F = 0, thus 

i?0 = 0 and S0 = 9P0FQ = 0. 

Setting n = 0 in (4), we find that 0 = RQ = S0 + c = c, i.e., o = 0. Therefore, 

Rn = Sn for all n. Q.E.D. (5) 

Also solved by L.A. G. Dresel, C. Georghiou, L. Kuipers, J. Z. Lee & J. S. Lee, 
Heinz-Jurgen Seiffert, and the proposer. 

Lucas-Pell Products Summed 

B-566 Proposed by Heinz-Jurgen Seiffert, Berlin, Germany 

Let Pn be as in B-565. Show that 

9 £pkLk = Pn + 2Ln + Pn + 1Ln+2 + PnLn_x - Pn.xLn + x - 6. 

k = 0 

Solution by Paul S. Bruckman, Fair Oaks, CA 
The proof is similar to that of B-565. Using the same notation, we find, 

as before, that 

Mn = 9?„+A + 1 = A5n, (1) 
and 

Rn = Sn + c, n = 0, 1, 2, ..., (2) 
for some constant c (independent of n). 

Also, however, we have the following relation, which differs from (1) in the 
solution of B-565: 

Rn = 3(Pn + 1Ln +PnLn + 1) - 6. (3) 
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As before, S0 = 9P0LQ = 0; also, using (3), i?0 = 3(1 • 2 + 0 • 1) - 6 = 0. Set-
ting n = 0 in (2), as before, we find that c = 0. Thus, 

Rn = Sn for all n. Q.E.D. (4) 

Also solved by L.A. G. Dresel, C. Georghiou, L. Kuipers, J. Z. Lee & J. S. Lee, 
J. Suck, and the proposer. 

Relatives of Hermlte Polynomials 

B-567 Proposed by P. Rubio, Dragados Y Construcciones, Madrid, Spain 

Let a0 = a1 = 1 and an + 1 = an + nan_1 for n in Z+ = {l, 2, . ..}. Find a 
simple formula for 

k = o Kl 

Solution by L.A. G. Dresel, Reading. England 

Putting Ak = ak/kl, we have 

fc = o 

where 40 = ̂  = 1 and (n + l)An + 1 = An + ̂ n - 1 for n = 1, 2S . . . . It follows 
that the series for G(x) is convergent and differentiable, and 

^ = Z(k + l)Ak+1xk = A1 + Z_(Ak + Ak_Jx* = ZjAkx* + Akxk + 1) 
dG = 

k~^0 - — - k—i - - fe—Q 

(1 + x)G 

Since G(0) = 1, we can integrate the differential equation for G to obtain 
l 2 

G(x) = e 2 . 

Also solved by Duane Brollne, Paul S. Bruckman, Odoardo Brugla& Plero Flllpponl, 
Darlo Castellanos, Laszlo Cseh, Alberto Facchlnl, J. Foster, C. Georghiou, L. 
K,ulpers, J. Z. Lee & J. 5. Lee, Imre Merenyl, Heinz-Jurgen Selffert, J. Suck, 
David Zeltlln, and the proposer. 

Editorial Note: Castellanos and Zeitlin pointed out that an = 2~ n ' 2 i n H n ( - i / V 2 ), 
where the Hn are the Hermite polynomials. Bruckman, Seiffert, and Zeitlin gave 
the explicit formula: 

[n/2] 

a = n l E (l/2k(n - 2k)\k\). 
k = o 

• 0404 
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