ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by A. P. HILLMAN

Assistant Editors GLORIA C. PADILLA and CHARLES R. WALL

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to DR. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solution or problem should be on a separate sheet (or sheets). Preference will be given to those typed with double spacing in the format used below. Solutions should be received within four months of the publication date.

DEFINITIONS

The Fibonacci numbers ${\cal F}_n$ and the Lucas numbers ${\cal L}_n$ satisfy

and

 $F_{n+2} = F_{n+1} + F_n, F_0 = 0, F_1 = 1$ $L_{n+2} = L_{n+1} + L_n, L_0 = 2, L_1 = 1.$

PROBLEMS PROPOSED IN THIS ISSUE

B-586 Proposed by Heinz-Jürgen Seiffert, Student, Berlin, Germany

Show that $5\sum_{k=0}^{n} F_{k+1}F_{n+1-k} = (n+1)F_{n+3} + (n+3)F_{n+1}$.

B-587 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC

Let
$$y = \sum_{n=0}^{\infty} F_n x^n / n!$$
 and $z = \sum_{n=0}^{\infty} L_n x^n / n!$.

Show that y'' = y' + y and z'' = z' + z.

B-588 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC

Find the y and z of Problem B-587 in closed form.

B-589 Proposed by Herta T. Freitag, Roanoke, VA

The number N = 0434782608695652173913 has the property that the digits of *KN* are a permutation of the digits of *N* for K = 1, 2, ..., m. Determine the largest such *m*.

B-590 Proposed by Herta T. Frietag, Roanoke, VA

Generalize on Problem B-589 and describe a method for predicting the leftmost digit of $\ensuremath{\textit{KN}}$.

1987]

85

ELEMENTARY PROBLEMS AND SOLUTIONS

B-591 Proposed by Mihaly Bencze, Jud. Brasa, Romania

Let
$$F(x) = 1 + \sum_{n=1}^{\infty} a_n x^n$$
 with each a_n in $\{0, 1\}$.

Prove that $f(x) \neq 0$ for all x in -1/a < x < 1/a, where $a = (1 + \sqrt{5})/2$.

SOLUTIONS

Constant Modulo 5

B-562 Proposed by Herta T. Freitag, Roanoke, VA

Let c_n be the integer in $\{0, 1, 2, 3, 4\}$ such that

 $c_n \equiv L_{2n} + \lfloor n/2 \rfloor - \lfloor (n-1)/2 \rfloor \pmod{5},$

where [x] is the greatest integer in x. Determine c_n as a function of n.

Solution by J. Suck, Essen, Germany

 $c_n = 3$ for all $n \in \mathbb{Z}$. From the very definition, we see that $L_n \equiv 2$, 1, 3, 4 (mod 5) for $n \equiv 0$, 1, 2, 3, respectively, (mod 4). Hence

 $L_{2n} \equiv \begin{cases} 2 & \text{for } n \text{ even} \\ 3 & \text{for } n \text{ odd.} \end{cases}$

But for *n* even,

$$\frac{n}{2} - \left[\frac{n}{2} - \frac{1}{2}\right] = \frac{n}{2} - \left(\frac{n}{2} - 1\right) = 1,$$

and for n odd,

$$\left[\frac{n-1}{2} + \frac{1}{2}\right] - \left[\frac{n-1}{2}\right] = \frac{n-1}{2} - \frac{n-1}{2} = 0.$$

So,

$$L_{2n} + \left[\frac{n}{2}\right] - \left[\frac{n-1}{2}\right] \equiv \begin{cases} 2+1, & n \text{ even} \\ 3+0, & n \text{ odd} \end{cases} = 3 \pmod{5}.$$

Also solved by Paul S. Bruckman, László Cseh, L.A.G. Dresel, Piero Filipponi, C. Georghiou, L. Kuipers, J. Z. Lee & J. S. Lee, Imre Merényi, Bob Prielipp, Heinz-Jürgen Seiffert, and the proposer.

2 of 3 Are Multiples of 4

B-563 Proposed by Herta T. Freitag, Roanoke, VA

Let $S_n = \sum_{i=1}^n L_{2i+1}L_{2i-2}$. For which values of *n* is S_n exactly divisible by 4?

Solution by J. Suck, Essen, Germany

From the definition of the Lucas numbers we see that if $k \equiv 0, 1, 2, 3, 4, 5 \pmod{6}$, then $L_k \equiv 2, 1, 3, 0, 3, 3 \pmod{4}$, respectively. Hence, if $i \equiv 1$,

86

[Feb.

2, 0 (mod 3), then $L_{2i+1}L_{2i-2} \equiv 0 \cdot 2 \equiv 0$, $3 \cdot 3 \equiv 1$, $1 \cdot 3 \equiv 3 \pmod{4}$, respectively. This, of course, implies that $S_n \equiv 0 \pmod{4}$ if and only if $n \equiv 1$ or 0 (mod 3) and $S_n \equiv 1$ otherwise.

Also solved by Paul S. Bruckman, László Cseh, L.A.G. Dresel, Piero Filipponi, C. Georghiou, L. Kuipers, J. Z. Lee & J. S. Lee, Bob Prielipp, Heinz-Jürgen Seiffert, and the proposer.

Summing $[\alpha F_k]$

B-564 Proposed by László Cseh, Cluj, Romania

Let $a = (1 + \sqrt{5})/2$ and [x] be the greatest integer in x. Prove that

$$[aF_1] + [aF_2] + \cdots + [aF_n] = F_{n+3} - [(n+4)/2].$$

Solution by Paul S. Bruckman, Fair Oaks, CA

First we note that $aF_k = 5^{-1/2} (a^{k+1} - b^{k+1} + b^k(b - a)) = F_{k+1} - b^k$. Since -1 < b < 0, thus $[aF_{2k}] = F_{2k+1} - 1$, $[aF_{2k+1}] = F_{2k+2}$, or $[aF_k] = F_{k+1} - e_k$, where e_k is the characteristic function of the even integers.

Let
$$S_n \equiv \sum_{k=1}^n [aF_k]$$
. Then

$$S_n = \sum_{k=1}^n (F_{k+1} - e_k) = \sum_{k=1}^n (F_{k+3} - F_{k+2}) - \left[\frac{n}{2}\right] = F_{n+3} - F_3 - \left[\frac{n}{2}\right]$$

$$= F_{n+3} - \left[\frac{n+4}{2}\right]. \quad Q.E.D.$$

Also solved by Piero Filipponi, C.Georghiou, L.Kuipers, J. Z. Lee & J. S. Lee, Imre Merényi, Bob Prielipp, Heinz-Jürgen Seiffert, J. Suck, and the proposer.

Fibonacci-Pell Products Summed

B-565 Proposed by Heinz-Jürgen Seiffert, Student, Berlin, Germany

Let P_0 , P_1 , ... be the sequence of Pell numbers defined by $P_0 = 0$, $P_1 = 1$, and $P_n = 2P_{n-1} + P_{n-2}$ for $n \in \{2, 3, ...\}$. Show that

$$9\sum_{k=0}^{n} P_{k}F_{k} = P_{n+2}F_{n} + P_{n+1}F_{n+2} + P_{n}F_{n-1} - P_{n-1}F_{n+1}.$$

Solution by Paul S. Bruckman, Fair Oaks, CA

Let R_n denote the right member in the statement of the problem. Then

$$R_{n} = (2P_{n+1} + P_{n})F_{n} + P_{n+1}(F_{n+1} + F_{n}) + P_{n}(F_{n+1} - F_{n}) - (P_{n+1} - 2P_{n})F_{n+1};$$

after simplification, this reduces to

$$R_n = 3(P_{n+1}F_n + P_nF_{n+1}).$$
⁽¹⁾

1987]

87

ELEMENTARY PROBLEMS AND SOLUTIONS

Therefore,

$$\Delta R_n \equiv R_{n+1} - R_n = 3(P_{n+2}F_{n+1} - P_{n+1}F_n + P_{n+1}F_{n+2} - P_nF_{n+1})$$

= 3{(2P_{n+1} + P_n)F_{n+1} - P_{n+1}F_n + P_{n+1}(F_{n+1} + F_n) - P_nF_{n+1}},

which reduces to

$$\Delta R_n = 9P_{n+1}F_{n+1}.\tag{2}$$

On the other hand, let \mathcal{S}_n denote the left member in the statement of the problem. Clearly,

$$\Delta S_n = 9P_{n+1}F_{n+1}. \tag{3}$$

Since $\Delta R_n = \Delta S_n$, this implies that

$$R_n = S_n + c, \ n = 0, \ 1, \ 2, \ \dots, \tag{4}$$

for some constant c (independent of n). Since $P_0 = F_0 = 0$, thus

 $R_0 = 0$ and $S_0 = 9P_0F_0 = 0$.

Setting n = 0 in (4), we find that $0 = R_0 = S_0 + c = c$, i.e., c = 0. Therefore,

$$R_n = S_n \text{ for all } n. \quad Q.E.D. \tag{5}$$

Also solved by L.A.G. Dresel, C. Georghiou, L. Kuipers, J. Z. Lee & J. S. Lee, Heinz-Jürgen Seiffert, and the proposer.

Lucas-Pell Products Summed

B-566 Proposed by Heinz-Jürgen Seiffert, Berlin, Germany

Let P_n be as in B-565. Show that

n

$$9\sum_{k=0}^{n} P_{k}L_{k} = P_{n+2}L_{n} + P_{n+1}L_{n+2} + P_{n}L_{n-1} - P_{n-1}L_{n+1} - 6.$$

Solution by Paul S. Bruckman, Fair Oaks, CA

The proof is similar to that of B-565. Using the same notation, we find, as before, that

$$\Delta R_n = 9P_{n+1}L_{n+1} = \Delta S_n,\tag{1}$$

and

.

.

$$R_n = S_n + c, n = 0, 1, 2, \dots,$$
 (2)
for some constant c (independent of n).

Also, however, we have the following relation, which differs from (1) in the solution of B-565:

$$R_n = 3(P_{n+1}L_n + P_nL_{n+1}) - 6.$$
(3)

88

[Feb.

As before, $S_0 = 9P_0L_0 = 0$; also, using (3), $R_0 = 3(1 \cdot 2 + 0 \cdot 1) - 6 = 0$. Setting n = 0 in (2), as before, we find that c = 0. Thus,

$$R_n = S_n \text{ for all } n. \quad Q.E.D. \tag{4}$$

Also solved by L.A.G. Dresel, C. Georghiou, L. Kuipers, J. Z. Lee&J. S. Lee, J. Suck, and the proposer.

Relatives of Hermite Polynomials

B-567 Proposed by P. Rubio, Dragados Y Construcciones, Madrid, Spain

Let $a_0 = a_1 = 1$ and $a_{n+1} = a_n + na_{n-1}$ for n in $Z^+ = \{1, 2, ...\}$. Find a simple formula for

$$G(x) = \sum_{k=0}^{\infty} \frac{a_k}{k!} x^k.$$

Solution by L.A.G. Dresel, Reading. England

Putting $A_k = a_k/k!$, we have

$$G(x) = \sum_{k=0}^{\infty} A_k x^k,$$

where $A_0 = A_1 = 1$ and $(n + 1)A_{n+1} = A_n + A_{n-1}$ for n = 1, 2, ... It follows that the series for G(x) is convergent and differentiable, and

$$\frac{dG}{dx} = \sum_{k=0}^{\infty} (k+1)A_{k+1}x^k = A_1 + \sum_{k=1}^{\infty} (A_k + A_{k-1})x^k = \sum_{k=0}^{\infty} (A_k x^k + A_k x^{k+1})$$
$$= (1+x)G.$$

Since G(0) = 1, we can integrate the differential equation for G to obtain $G(x) = e^{x + \frac{1}{2}x^2}$

Also solved by Duane Broline, Paul S. Bruckman, Odoardo Brugia & Piero Filipponi, Dario Castellanos, László Cseh, Alberto Facchini, J. Foster, C. Georghiou, L. Kuipers, J. Z. Lee & J. S. Lee, Imre Merényi, Heinz-Jürgen Seiffert, J. Suck, David Zeitlin, and the proposer.

Editorial Note: Castellanos and Zeitlin pointed out that $a_n = 2^{-n/2}i^n H_n(-i/\sqrt{2})$, where the H_n are the Hermite polynomials. Bruckman, Seiffert, and Zeitlin gave the explicit formula:

$$a_n = n! \sum_{k=0}^{\lfloor n/2 \rfloor} (1/2^k (n - 2k)!k!).$$

1987]

89