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In this paper, we extend the concept of mutually counting sequences dis-
cussed in [1] to the case of three sequences of the same length. Specifically, 
given the positive integer n > 1, we define three sequences, 

A: M O ) , a(l), ..., a(n - 1), 

B: M O ) , M l ) , .... b(n - 1), 

C: M O ) , M l ) , •-., c(n - 1), 

where a(i) is the multiplicity of i in 5, M j ) is the multiplicity of j in C, 
and M & ) is the multiplicity of k in 4̂. We call the ordered triple (A9B9 C) a 
cyclic counting trio, and we make some preliminary observations: 

(i) the entries in sequences A, B, and C are nonnegative integers less 
than n. 

(ii) if S(A) = "I] a(i)s S(B) = " E M J ) , and 5(C) = *£ <?(&)> then 
i=0 J = 0 & = 0 

5(4) = S(B) = S(C) = n. 

(iii) if (A, B9 C) is a cyclic counting trio, then so are (5, C, A) and 
(C, A, B) . Such permuted trios will not be considered to be differ-
ent . 

We say that the cyclic counting trio (A, B9 C) is redundant if A9 B, and C are 
identical. In what follows, we show that there is a unique redundant trio for 
each n ^ 7': 

M O ) = n - 4, M l ) = 2, a(2) = 1, a(n - 4) = 1, M i ) = 0 
for all remaining i . 

There are also two redundant trios when n = 4,. one when n = 5, and no others. 
Furthermore, we show that a nonredundant trio results only when n = 7: 

M O ) = 4, M l ) = 1, a(3) = 2, M 2 ) = M 4 ) = M 5 ) = a(6) = 0; 

M O ) = 3, M l ) = 3, M 4 ) = 1, M 2 ) = b(3) = i(5) = b(6) = 0; 

c(0) = 4, M l ) = M 2 ) = M 4 ) = 1, c(3) = M 5 ) = M 6 ) = 0. 

As a way to become familiar with the problem, we invite the interested 
reader to investigate the existence of cyclic counting trios when n < 7. We 
will therefore proceed under the assumption that (A s B9 C) is a cyclic counting 
trio and that n > 7. For future reference, we let 

n* = n - \~1 , 
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and note that 

ft - r . 

~TZ if ft is even, 
rr 

^n + 1 if ft is odd. 2 

Since n ^ 7, it follows that ft* ̂  4. 

I. For each N > n*, a{N) = 0 or 1, b(N) = 0 or 1, and g(N) = 0 or 1 

If a(tf) > 2, then N appears at least twice in B. So 

n if n is even, 
ft = 5(B) > 2N > 2n* 

^n + 1 if n is odd, 

which is only possible when n is even. In this case, 

N = n* = y and afyj = 2, 

which implies that ft/2 appears exactly twice in B. Thus, 0 must appear exactly 
ft - 2 times in 5. Then 

a (0) = n - 2, a(-y) = 2, and the n - 2 remaining entries of A are 0 

=^> e(0) - n - 2, c(2) = 1, <?(n - 2) = 1, and the n - 3 remaining entries 
of C are 0 

=> M O ) = n - 3, M l ) = 2, bin - 2) = 1, and the ft - 3 remaining entries 
of B are 0 

=̂ >a(0) = n - 3, a contradiction. 

Conclude that a(#) = 0 or 1, and use a similar argument to show that b(N) = 0 
or 1 and c(N) = 0 or 1, 

11. q(j') = 1 for at most one j ^ ft* , Z?(/c) = 1 for at most one k > ft* , 

and g(£) = 1 for at most one & ̂  re*. 

Let # and N' be distinct integers, each ̂  ft*, and suppose that 

a(N) = a(/l/f) = 1. 

Then , . ,. 
n if n is even, ft = 5(5) > i!7 + N' > 2n* = < a contradiction. 

\n + 1 if n is odd, 

Conclude that there is at most one j > ft* such that a(j) = 1. Similarly, there 
is at most one k ^ n* such that M/c) = 1 anci a t most one £ > ft* such that o{l) 
= 1. Note that this result implies that 0 appears at least 

n - f t * - l = — - 1 •tt ] 
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times in A9 Bs and C9 so that 

a(0) > [f] - 1, HO) > [|] - 1, and M O ) > [f] - 1. 

111. If g(j) = 1 for some j > n* , then b(0) = j . 

Assume that a(j)= 1 for some j ^ n* . Then j appears exactly once in B, so 
that Mj*) = J for some integer j* . This means that j * appears j times in (7. 

r n if n is even, 
If j* > 2, then « = 5(C) > j*j > 2j > 2n* = < 

(n + 1 if n is odd, 

which is only possible when n is even, j* = 2, and j = n/2. Hence, 2 appears 
n/2 times in C, and since n = M O , it follows that 0 appears n/2 times in C as 
well. Thus, h(0) = n/2, b(2) = n/2, and the n - 2 remaining entries of B are 
0. This implies that a(0) = n - 2, a(n/2) = 2, and the 7^-2 remaining entries 
of A are 0, contradicting the assumption that a(j) = 1 for some j ^ n*. Thus, 
either j* = 1 or j* = 0 . 

Assume that j* = 1. Then M l ) = j, so that 

rz = S(B) > M O ) + M l ) > [f] ~ 1 + J > [f] - 1 + n* = n - 1. 

This t e l l s us that MO) + M l ) = n or MO) + M l ) = n~ l- I f MO) + M D = ^ , 
then 

M O ) = n - j s M l ) =J 9 and the n - 2 remaining entries of 5 are 0 

=> a(0) = n - 2, a(j) = 1, a(n - j) = 1, and the n - 3 remaining entries 
of A are 0 

[If n - j and j were equal, then a(j) = 2, a contradiction.] 

=^c(0) = n - 39 c(l) = 2, e(n - 2) = 1, and the n - 3 remaining entries 
of C are 0 

=>M1) = l. 

This means that j = 1, contradicting the fact that j > n* ^ 4. 
If M O ) + M l ) = n - 1, then 

M O ) = n - j - 1, M l ) = <7, 

one of the remaining entries of B is 1, and the other n - 3 remaining entries 
of £ are 0. If n - j - 1 = j, then a(j) = 2, a contradiction. If n - j - 1 = 
1 or 0, then M 0 ) = 1 or 0, contradicting the fact that 

M0) > [f] 1 > 2. 

Hence, the integers 0, 1, J, and n - j - 1 are all distinct. This means that 
1, j, and n - j - 1 each appear once in 59 and the n - 3 remaining entries of 
5 are 0. So 

a(0) = n - 3, a(l) = 1, a(n - j - 1) = 1, a(j) = 1, 
and the n - 4 remaining entries of ̂ 4 are 0 
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=> c(0) =?-2-45 c{\) = 3, c{n - 3) = 1, and the n - 3 remaining entries 
of C are 0 

=»Mi) = i. 

Once again, this means that j = 1, a contradiction. 
Therefore, j* ̂  1. Conclude that j * = 0 , so that if a(j) = 1 for some 

j > ft* , then Z?(0) = J . 

IV. If n > 7, there exists j ^ ft* such that a(j) = 1. 

Assume that a(N) = 0 for all N > n*. Since &(0) > y - 1, two possibil-

ities exist: either b(0) = y - 1 or b(0) = y when ft is odd. (if &(0) = 

— when n is even or if b(0) ) T , then a(/l/) ̂  0 for some N ^ n*. ) 

Suppose first that b(Q) = -y - 1. Then 0 appears exactly \— \ - 1 times 

in C9 so that there are ^ ~ ( y - 1 ) = n* + 1 nonzero entries in C. Conse-

quently, 

„ =S(A) > £ i =ra*(w*?
+ 1}. 

i = 0 Z 

If ft is even, then this inequality becomes 

n ^ ~ , which is false for even n > 6. 

If n is odd, then this inequality becomes 

(^iH1 + 0 
n > , which is false for odd n > 3. 

Suppose next that b(0) = y when n is odd. Then 0 appears exactly — 

times in C, so that there are n - y = ft* nonzero entries in C Therefore, 

^ ^ ^ ^ » (n* - l)n* \~~2 l)\T~~) 
n = S(A) > E ^ = ~ J~^— = 9 » 

i = o 

which is false for odd n > 7. 

The conclusion follows. 
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f n = 7, a(N) = 0 for all N > n* = 4, and b(0) = [j~\ = 3, then two cycl ic 

counting trios exist, one of which is nonredundant. (These represent the 

only set of circumstances that did not lead to a contradiction in IV.) 

Since b(0) = 3 and S(B) = 7, it follows that 

E Mfc) = 4. 
k = 1 

Furthermore, 5(C) = 7 implies that 

6 

T,kb(k) = 7, 
fc = i 

For convenience, we will let {fc15 fc2, k3, kh, k5, kQ} represent some permuta-
tion of {1, 2, 3, 4, 5, 6}. From II, we know that 

a(0) > [f] 1 = 2. 

a (0 ) = 2 =̂> Z?(^x) = b(k2) = b(k3) = b{kh) = 1, Z?(/c5) = b(kB) = 0 
=» 7 = /c1 + A:2 + k3 + fc > 10, a c o n t r a d i c t i o n . 

a (0 ) = 3 =^b(k±) = 2 , Z?(k2) = b(k3) = 1, Z?(^) = b(k5) = 2?(kG) = 0 

=> 7 = 2k± + k2 + k3 => k± = 1, k2 = 2, k3 = 3 

^b(l) = 2 , 2?(2) = M 3 ) = 1. M 4 ) = b(5) = b(6) = 0 . 

Recalling that b(0) = 3, we find that 

a(0) = 3, a(l) = 2, a(2) = a(3) = 1, a(4) = a(5) = a(6) = 0, 

which, in turn, implies that 

c(0) = 3, c(l) = 2, c(2) = c(3) = 1, c(4) = o(5) = c(6) = 0. 

This is the redundant trio predicted for n = 7. 

a(0) = 4 ^b(k±) + b(k2) = 4, b(k3) = b(kh) = b(k5) = b(k6) = 0. 

If b(k±) = b(k2) = 2, then 2k± + 2A:2 = 7, a contradiction. If b(k±) = 3 and 
b(k2) = 1, then 3k x + & 2 = 7» s o that either k1 = 2 and /c2 = 1 or /^ = 1 and 
k2 = 4. In the first case, 2?(0) = 3, b(l) = 1, ZP(2) = 3, and the four remain-
ing entries of B are 0 =^a(0) = 4, a(l) = 15 a(3) = 2, and the four remaining 
entries of A are 0 =^c(0) = 4, e(l) = 1, c(2) = 1, <?(4) = 1, and the three re-
maining entries of C are 0 =$>b(l) = 3, a contradiction. 

In the second case, b(0) = 3, b(l) = 3, 2?(4) = 1» and the four remaining 
entries of 5 are 0 =#> a(0) = 4, a(l) = 1, a(3) = 2, and the four remaining en-
tries of A are 0 ==> c(0) = 4, c(l) = 1, c(2) = 1, c(4) = 1, and the three re-
maining entries of C are 0. This is the nonredundant trio predicted at the 
outset for n = 7. 
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a(O) = 5 ^b(k±) = 4 , b(k2) = b(k3) = b(k^) = b(k5) = fc(k6) = 0 
=̂  4/cx = 7, a contradict ion. 

a(O) = 6 ̂ M ^ ) = Z?(fe2) = b(k3) = b{kh) = b(k5) = b(k6) = 0 
=> 0 = 4, a contradiction. 

If n = 7 and a(j)= 1 for some j > n* = 4, then it is easy to verify that j 
must be 4. The cyclic counting trios that subsequently result are permuted 
versions of the nonredundant one just found. As a results we may now continue 
under the assumption that n > 7. 

VI. a(n* - 1) = 0; o(0) > R~1 . 

Suppose that a(n* - 1) ̂  0. Then n* - 1 appears at least once in B. Since 
b(0) = j and since j > n* implies j ^ n* - 1, we find that 

n = S(B) > j + (n* - 1) > n* + (rc* - 1) 

( n - 1 if n is even, 
= 2n* - 1 = 1 

{ n if n is odd. 

This tells us that a(n* - 1) = 1, i.e., n* - 1 appears exactly once in B» 
If n is even, then some other entry of B is 1 and the n - 3 remaining en-

tries of B are 0. Therefore, 

a(0) = n - 3, a(l) = 35 and the n - 2 remaining entries of A are 0 

=^ c(0) = n - 2S <?(3) = 1? c(n - 3) = 1, and the n - 3 remaining entries 
Of C SLTB 0 

=>Z?(1) = 2, a contradiction. 

If n is odd, then the n - 2 remaining entries of B are 0» Therefore, 
a(0) = n - 2S a(l) = 2, and the n - 2 remaining entries of ̂  are 0 

=>c(Q) = n - 2, c(2) = 1, <?(n - 2) = 1, and the n - 3 remaining entries 
of C are 0 

=>2?(1) = 2, again a contradiction. 

Hence, we conclude that a(n* - 1) = 0 . Using this fact and the observation 

following II, we can now assert that 0 appears at least ("y ~ ^ ) + * = I?" 

times in A, so that o(0) ^ \— \. 
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VII. If c(O) = k L then the only cycl ic counting trio that results is the 

redundant one for n = 8. 

[!]>ic fo Since c(0) = T , i t fo l lows t h a t a(i) + 0 fo r 1 < i < n* - 2 . Thus, each 

p o s i t i v e i n t e g e r l e s s than or equa l to n* - 2 appea r s a t l e a s t once i n B. Re-
c a l l i n g t h a t j appear s once in B a s w e l l , we ge t 

n =S(B) >j +
 nZ2i>n*+

 (W* - 2)
2

(W* ~ 1 } , 
I = 1 

i . e . , 

( n * ) 2 - n* + 2 
n > 

If n is odd, then n* = (n + l)/2 and this inequality leads to n2 - Sn + 7 < 0, 
a contradiction for odd n > 7. If n is even, then n* = n/2 and this inequality 
leads to n2 - lOn + 8 ^ 0 , a contradiction for even n > 8. 

The case in which ?2 = 8 produces the redundant cyclic counting trio with 
a(0) = 4, a(l) = 2, a(2) = 1, a(4) = 1, and a(i) = 0 for all remaining i . 

VI II. If c(0) > [^1, then Z? (n* - 1) = 0 and a(0) > f"̂ l . 

The fact that c(0) > \~\ implies that o(0) > n*. Therefore, &(&) = 1 for 

exactly one integer k > n* and c(0) = A:. If b(n* - 1) ̂  0, then n* - 1 appears 
at least once in C. Since k appears in C as well, and since 

k + (n* - 1) > [|1 + (n* - 1) = n - 1, 

0 = -

c(0) = [?] + *' 
it follows from 5(C) = n that the n - 2 remaining entries of C must be 0 and 
that 

Thus, 

M O ) = n - 2, i(|"fl + l) = 1, M«* - 1) = 1, 
L̂ J ' and the n - 3 remaining entries of £ are 0 

=>a(0) = n - 3, a(l) = 2, a(n - 2) = 1, 
and the n - 3 remaining entries of ̂  are 0 

^c(O) = n - 3, c(l) = 1, c(2) = 1, c(w - 3) = 1, 
and the n - 4 remaining entries of C are 0, 
contradicting the fact that b(Q) = n - 2. 

As a result, we conclude that bin* - 1) = 0, so that (as in VI), a(0) > — [f] 
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IX. If a(O) = y , no cyclic counting trio can be produced; if a(0) > \~ , 

then c{n* - 1) = 0. 

The argument used in VII can be employed to show that no cyclic counting 

trio results when a(0) = I— . ( The only possibility, the redundant trio for 

n = 8, is disqualified because M O ) > y .J If a(0) > y , then a(0) > ft*. 

Thus, M £ ) = 1 for exactly one integer £ ^ ft*, and a(0)= £. As in VIII, we can 
conclude that c(n* - 1) = 0. 

At this point, we are left with one case to consider: 

a(j) = 1, M O ) = j; b(k) = 1, M O ) = k; 

c{l) = 1, a(0) = £, where j, fc, £ > ft*. 

X. j = k = £. 

For convenience, let us write j = f t - P , / c = f t . - s , and £ = ft - £, where 

1 < P, s, £ < [I]. 
If p = 1, then j = n - 1, so M O ) = ft - 1. This means that ft - 1 entries 

of (7 are 0, contradicting the fact that o(0) - k and c?(£) = 1 . If r = 2, then 
j = n - 2, so M O ) = ft - 2. Since M O ) = k and c?(£) = 1, all remaining entries 
of C must be 0. Then n = S(C) = k + 1, implying that k = ft - 1. Hence, M O ) = 
ft - 1, so that ft - 1 entries of A are 0, contradicting the fact that a(0) = £ 
and a(j) = 1. Therefore, P ^ 1 or 2. Similarly, s £ 1 or 2 and t ^ 1 or 2. 

Suppose that a(i) ^ 0 for some integer i ^ v - 1, where i # j. (Note that 
£ > 2.) Then 

ft = M S ) > £ + j + l > p - i + j + l = .p + j = ft, 

which implies that i = P - 1 and that the ft - 3 remaining entries of 5 are 0. 
Hence, 

a(0) = ft - 3, M l ) = U aU) = 1, M*1 - 1) = 1, 
and the ft - 4 remaining entries of A are 0 

=>c(0) = ft - 4 , c ( l ) = 3 , c(ft - 3) = 1, 
and the ft - 3 remaining e n t r i e s of C a r e 0 

=>M0) = ft - 3 , M l ) = 1» M 3 ) = 1, Z?(ft - 4) = 1, 
and the 7-2-4 remaining entries of B are 0 

=^ a(0) = ft - 4, a contradiction. 

Consequently, a(i) = 0 for all integers i > p - 1, where i £ j . In a similar 
manner, we can show that 

b(i) = 0 for all integers i > s - 1, where i ^ ks 

and 
M i ) = 0 for all integers i ^ t ~ 1, where i ^ £. 
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Thus, 

e(0) > ((n - 1) - (r - 1) + 1) - 1 = n - r, =>k> j 
a(O) > ((n - 1) - (s - 1) + 1) - 1 = n - s9 =» I > k 

b(0) > ((n - 1) - (t - 1) + 1) - 1 = n - t, =>j > I 

These three inequalities together imply that j = k = £. 

XI. A unique redundant cyclic counting trio exists for n > 7 . 

From X, we now know that for some J ^ n*, 

a(j) = bU) = eU) = 1 and a(0) = b(0) = c(0) = j. 

Since &(£) = 0 whenever i ̂  r - 1 and i ^ j, this accounts for n - r = j 
zeros in 5. Because a(0)=j, it follows that b(i) ^ 0 for 1 < i < v - 2. Then 

n = 5(B) = J + 1 + t Hi), 
i = l 

which implies that 

r- 2 
£ Z?(i) = n - j - l = r - l . 
i = 1 

If v - 3 5 then £>(1) = 2, so that B consists of one entry of j = n - 3, one en-
try of 1, one entry of 2, and n - 3 entries of 0. Therefore, 

a(0) = n - 3, a(l) = 1, a(2) = 1, a(n - 3) = 1, 
and the n - 4 remaining entries of A are 0 

=> c(Q) - n - 4, contradicting the fact that c(0) = J = n - 3. 

So P > 3. Then 

r-2 

E&(i) = r - 1 
i = l 

implies that one of the terms in the sum is 2 and each of the v - 3 others is 
1. Thus, B consists of one entry of j, one entry of 2, v - 2 entries of 1, and 
j entries of 0. Then 

a(0) = j, a(l) = v - 2, a(2) = 1, a(j) = 1, 
and the n - 4 remaining entries of A are 0, 

which implies that c(0) = ft - 4. 
If j / n - 4, then the resulting contradiction indicates that no cyclic 

counting trio can be produced; if j = n - 4 (i.e., if r = 4), we have 

a(0) = n - 4, a(l) = 2, a(2) = 1, a(n - 4) = "1, 
and the n - 4 remaining entries of A are 0 

=*><?(0) = n - 4, <?(1) = 2, c(2) = 1, c(n - 4) = 1, 
and the n - 4 remaining entries of C are 0 
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M O ) = n - 4, M l ) = 2, M 2 ) = 1, bin - 4) = 1, 
and the n - 4 remaining entries of B are 0. 

This is the previously mentioned cyclic counting trio for n > 7. 

REFERENCE 

1. S. Kahan. "Mutually Counting Sequences." The Fibonacci. Quarterly 18, no. 
1 (1980):47-50. 

20 [Feb. 


