A COMPLETE CHARACTERIZATION OF B-POWER FRACTIONS THAT CAN
BE REPRESENTED AS SERIES OF GENERAL n-BONACCI NUMBERS

```
JIN-ZAI LEE and JIA-SHENG LEE
Soochow University, Taipei, Taiwan, R.O.C.
```

(Submitted April 1985)

1. INTRODUCTION AND MAIN RESULT

In 1953, Fenton Stancliff [5] noted that

$$
\frac{1}{89}=.011235813=\sum_{k=0}^{\infty} 10^{-(k+1)} F_{k}
$$

21
where F_{k} denotes the $k^{\text {th }}$ Fibonacci number. Until recently, this expansion was regarded as an anomalous numerical curiosity, possibly related to the fact that 89 is a Fibonacci number (see Remark in [5]), but not generalizing to other fractions in an obvious manner.

In 1980, C. F. Winans [6] showed that the sums $\sum 10^{-(k+1)} F_{\alpha k}$ approximate $1 / 71,2 / 59$, and $3 / 31$ for $\alpha=2,3$, and 4 , respectively. Moreover, he showed that the sums $\sum 10^{-2(k+1)} F_{\alpha k}$ approximate $1 / 9899,1 / 9701,2 / 9599$, and $3 / 9301$ for $\alpha=1,2,3$, and 4, respectively.

Since then, several authors proved general theorems on fractions that can be represented as series involving Fibonacci numbers and general n-Bonacci numbers [1, 2, 3, 4]. In the present paper we will prove a theorem which includes as special cases all the earlier results. We introduce some notation in order to state our theorem.

Let arbitrary complex numbers $A_{0}, A_{1}, \ldots, A_{m}, W_{0}, W_{1}, \ldots, W_{m}$, and B be given. Construct the sequence W_{k} by the recursion

$$
W_{n+m+1}=\sum_{r=0}^{m} A_{r} W_{n+m-r}
$$

for $n \geqslant 0$ or, equivalently, by the formula

$$
W_{n}=\sum_{r=0}^{m} \lambda_{r} \omega_{r}^{n}
$$

for any integer n where $\omega_{r}(r=0,1, \ldots, m)$ are the zeros of the polynomial

$$
q(z)=z^{m+1}-\sum_{r=0}^{m} A_{r} z^{m-r}
$$

and $\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{m}\right)$ is the unique solution of the system of $m+1$ linear equations

$$
\sum_{r=0}^{m} \lambda_{r} \omega_{r}^{n}=W_{n} \quad(n=0,1, \ldots, m)
$$

(see [2], p. 35). Finally, we introduce, for any integer α,

$$
M(m)=\prod_{r=0}^{m}\left(B-\omega_{r}^{\alpha}\right)
$$

Theorem: For integers $\alpha \geqslant 1, \beta \geqslant 0$, and any complex B satisfying

$$
\max _{0 \leqslant r \leqslant m}\left|\omega_{r}^{\alpha} / B\right|<1,
$$

we have the formula

$$
M(m) \cdot \sum_{k=0}^{\infty} B^{-k} W_{\alpha k+\beta}=B \cdot \sum_{r=0}^{m} \lambda_{r} \omega_{r}^{\beta} \cdot \prod_{\substack{0 \leqslant k \leqslant m \\ k \neq r}}\left(B-\omega_{k}^{\alpha}\right) .
$$

Remark: In the above formula, $M(m)$ and the right-hand side are in fact integers if $B, A_{0}, A_{1}, \ldots, A_{m}, W_{0}, W_{1}, \ldots, W_{m}$ are all integers.

Now we can comment on earlier results in more detail. In 1981, Hudson and Winans [1] handled the case of the ordinary Fibonacci sequence with $\beta=0, B=$ 10^{n}. According to [3] and [4], their result can be written as

$$
\sum_{k=1}^{\infty} 10^{-n(k+1)} F_{\alpha k}=\frac{F_{\alpha}}{10^{2 n}-10^{n} L_{\alpha}-(-1)^{\alpha}}
$$

where L_{α} denote the Lucas numbers. Also in 1981, Long [4] treated the case of the general Fibonacci sequence, i.e., $m=1$ and arbitrary $A_{0}, A_{1}, W_{0}, W_{1}$, and B, with the restriction, however, to $\alpha=1, \beta=0$. In 1985, Köhler [2] gave the generalization for arbitrary $m, A_{0}, A_{1}, \ldots, A_{m}, W_{0}, W_{1}, \ldots, W_{m}, B$, again with the restriction to $\alpha=1, \beta=0$. His result is

$$
\sum_{k=1}^{\infty} B^{-k} W_{k-1}=p(B) / q(B)
$$

where p is a polynomial of degree m with explicitly given coefficients. Also in 1985, Lee [3] discussed the cases $m=1$ and $m=2$ of general Fibonacci and Tribonacci sequences with arbitrary α and β. The results of [3] will be deduced from our Theorem in Examples 1 and 2 below. For this purpose, we introduce the notation

$$
S_{n}=\sum_{r=0}^{m} \omega_{r}^{n}, \quad L(m)=M(m) \cdot \sum_{k=0}^{\infty} B^{-k} W_{\alpha k+\beta}
$$

Proof of Theorem: We have

$$
\begin{aligned}
\sum_{k=0}^{\infty} B^{-k} W_{\alpha k+\beta} & =\sum_{k=0}^{\infty} B^{-k} \sum_{r=0}^{m} \lambda_{r} \omega_{r}^{\alpha k+\beta} \\
& =\sum_{r=0}^{m} \lambda_{r} \omega_{r}^{\beta}\left(\sum_{k=0}^{\infty}\left(B^{-1} \omega_{r}^{\alpha}\right)^{k}\right)=B \sum_{r=0}^{m} \lambda_{r} \omega_{r}^{\beta} \cdot \frac{1}{B-\omega_{r}^{\alpha}} .
\end{aligned}
$$

Convergence is guaranteed by the condition on B. In the same way, we obtain
B-POWER FRACTIONS AS SERIES OF GENERAL n-BONACCI NUMBERS

$$
\sum_{k=1}^{\infty} B^{-k} W_{\alpha k+\beta}=\sum_{r=0}^{m} \lambda_{r} \omega_{r}^{\beta} \cdot \frac{\omega_{r}^{\alpha}}{B-\omega_{r}^{\alpha}} .
$$

Multiplying with $M(m)$ yields the Theorem.
Remark: Partial sums of the series in our Theorem can be expressed by these series, according to the formula

$$
B^{n} \cdot \sum_{k=0}^{\infty} B^{-k} W_{\alpha k+B}=B^{n} \cdot \sum_{k=0}^{n} B^{-k} W_{\alpha k+\beta}+\sum_{k=1}^{\infty} B^{-k} W_{\alpha k+(\alpha n+\beta)}
$$

2. EXAMPLES

Example 1: The general Fibonacci sequence. Take $m=1$. Then we have

$$
\begin{aligned}
W_{n+2} & =A_{0} W_{n+1}+A_{1} W_{n} \\
M(1) & =\left(B-\omega_{0}^{\alpha}\right)\left(B-\omega_{1}^{\alpha}\right)=B^{2}-B S_{\alpha}+\left(-A_{1}\right)^{\alpha} \\
\sum_{k=1}^{\infty} B^{-k} W_{\alpha k+\beta} & =\left\{\lambda_{0} \omega_{0}^{\alpha+\beta}\left(B-\omega_{1}^{\alpha}\right)+\lambda_{1} \omega_{1}^{\alpha+\beta}\left(B-\omega_{0}^{\alpha}\right)\right\} / M(1) \\
& =\left(B W_{\alpha+\beta}-\left(-A_{1}\right)^{\alpha} W_{\beta}\right) / M(1) \\
\sum_{k=0}^{\infty} B^{-k} W_{\alpha k+\beta} & =B\left(B W_{\beta}-\left(-A_{1}\right)^{\alpha} W_{\beta-\alpha}\right) / M(1)
\end{aligned}
$$

As to the partial sums, we get

$$
\begin{aligned}
\sum_{k=0}^{n} B^{n-k} W_{\alpha k+\beta} & =B^{n} L(1) / M(1)-\sum_{k=1}^{\infty} B^{-k} W_{\alpha k+\alpha n+\beta} \\
& =\frac{B^{n} L(1)-B W_{\alpha(n+1)+\beta}+\left(-A_{1}\right)^{\alpha} W_{\alpha n+B}}{B^{2}-B S_{\alpha}+\left(-A_{1}\right)^{\alpha}} .
\end{aligned}
$$

These formulas are equal to Theorems 1-3 of [3].
Example 2: The general Tribonacci sequence. Take $m=2$. Then we obtain

$$
\begin{aligned}
W_{n+3} & =A_{0} W_{n+2}+A_{1} W_{n+1}+A_{2} W_{n}, \\
M(2) & =B^{3}-B^{2} S_{\alpha}+B A_{2}^{\alpha} S_{-\alpha}-A_{2}^{\alpha}, \\
\sum_{k=1}^{\infty} B^{-k} W_{\alpha k+\beta} & =\left(B^{2} W_{\alpha+\beta}+B\left(W_{2 \alpha+\beta}-S_{\alpha} W_{\alpha+\beta}\right)+A_{2}^{\alpha} W_{\beta}\right) / M(2), \\
\sum_{k=0}^{\infty} B^{-k} W_{\alpha k+\beta} & =B\left(B^{2} W_{\beta}+B\left(W_{\alpha+\beta}-S_{\alpha} W_{\beta}\right)+A_{2}^{\alpha} W_{\beta-\alpha}\right) / M(2), \\
\sum_{k=0}^{n} B^{n-k} W_{\alpha k+\beta} & =B^{n} L(2) / M(2)-\sum_{k=1}^{\infty} B^{-k} W_{\alpha k+\alpha n+\beta}
\end{aligned}
$$

(continued)

$$
=\frac{B^{n} L(2)-B^{2} W_{\alpha(n+1)+B}+B\left(S_{\alpha} W_{\alpha(n+1)+\beta}-W_{\alpha(n+2)+\beta}\right)-A_{2}^{\alpha} W_{\alpha n+\beta}}{B^{3}-B^{2} S_{\alpha}+B A_{2}^{\alpha} S_{-\alpha}-A_{2}^{\alpha}}
$$

These formulas are equal to (9) and Theorems 7 and 8 in [3], and a misprint in Theorem 7 in [3] is corrected.

Example 3: The general Tetranacci sequence. Take $m=3$. Then we have

$$
\begin{aligned}
& W_{n+4}= A_{0} W_{n+3}+A_{1} W_{n+2}+A_{2} W_{n+1}+A_{3} W_{n} \\
& M(3)= B^{4}-B^{3} S_{\alpha}+B^{2}\left(S_{\alpha}^{2}-S_{2 \alpha}\right) / 2-B\left(-A_{3}\right)^{\alpha} S_{-\alpha}+\left(-A_{3}\right)^{\alpha} \\
& \sum_{k=1}^{\infty} B^{-k} W_{\alpha k+\beta}=\left\{B^{3} W_{\alpha+\beta}\right.+B^{2}\left(W_{2 \alpha+\beta}-S_{\alpha} W_{\alpha+\beta}\right) \\
&\left.+B\left(-A_{3}\right)^{\alpha}\left(S_{-\alpha} W_{\beta}-W_{\beta-\alpha}\right)-\left(-A_{3}\right)^{\alpha} W_{\beta}\right\} / M(3) \\
& \sum_{k=0}^{\infty} B^{-k} W_{\alpha k+\beta}=B\left\{B^{3} W_{\beta}+\right. B^{2}\left(W_{\alpha+\beta}-S_{\alpha} W_{\beta}\right)+B\left(2 W_{2 \alpha+\beta}-2 S_{\alpha} W_{\alpha+\beta}\right. \\
&\left.\left.+\left(S_{\alpha}^{2}-S_{2 \alpha}\right) W_{\beta}\right) / 2-\left(-A_{3}\right)^{\alpha} W_{\beta-\alpha}\right\} / M(3) \\
& \sum_{k=0}^{n} B^{n-k_{W} W_{\alpha k+\beta}=\left\{B^{n} L(3)\right.} \begin{aligned}
& -B^{3} W_{\alpha(n+1)+\beta}-B^{2}\left(W_{\alpha(n+2)+\beta}-S_{\alpha} W_{\alpha(n+1)+\beta}\right) \\
& \left.-B\left(-A_{3}\right)^{\alpha}\left(S_{-\alpha} W_{\alpha n+\beta}-W_{\alpha(n+1)+\beta}\right)+\left(-A_{3}\right)^{\alpha} W_{\alpha n+\beta}\right\} / M(3)
\end{aligned}
\end{aligned}
$$

Formulas for $m \geqslant 4$ can be obtained in a similar manner.

ACKNOWLEDGMENTS

We are deeply thankful to Dr. Hong-Jinh Chang and to the referee for the earnest discussions and valuable suggestions made.

REFERENCES

1. R. H. Hudson \& C. F. Winans. "A Complete Characterization of the Decimal Fractions That Can Be Represented as $\sum 10^{-k(i+1)} F_{\alpha i}$, Where $F_{\alpha i}$ Is the αi th Fibonacci Number." The Fibonacci Quarterly 19, no. 5 (1981):414-421.
2. G. Köhler. "Generating Functions of Fibonacci-Like Sequences and Decimal Expansions of Some Fractions." The Fibonacci Quarterly 23, no. 1 (1985): 29-35.
3. J. S. Lee. "A Complete Characterization of B-Power Fractions That Can Be Represented as Series of General Fibonacci Numbers or of General Tribonacci Numbers." Tamkang J. of Management Sciences 6, no. 1 (1985):41-52.
4. C. T. Long. "The Decimal Expansion of $1 / 89$ and Related Results." The Fibonacci Quarterty 19, no. 1 (1981):53-55.
5. F. Stancliff. "A Curious Property of $\alpha_{i i}$." Scripta Mathematica 19 (1953): 126.
6. C. F. Winans. "The Fibonacci Series in the Decimal Equivalents of Fractions." A Collection of Manuscripts Related to the Fibonacci Sequence. Santa Clara, Calif.: The Fibonacci Association, 1980, pp. 78-81.
