BRO. J. M. MAHON

Catholic College of Education, Sydney, Australia

and

A. F. HORADAM University of New England, Armidale, Australia (Submitted February 1985)

1. INTRODUCTION

By defining certain matrices of order 2, we are enabled to derive fresh properties of Pell polynomials $P_n(x)$ and Pell-Lucas polynomials $Q_n(x)$ additional to those obtained by us in [5]. Our work, in summarized form, is an adaptation and extension of some ideas of Walton [6], based on earlier work by Hoggatt and Bicknell-Johnson [2].*

The Pell and Pell-Lucas polynomials which are defined, respectively, by the recurrence relations

$$P_{n+2}(x) = 2xP_{n+1}(x) + P_n(x), P_0(x) = 0, P_1(x) = 1$$
(1.1)

and

$$Q_{n+2}(x) = 2xQ_{n+1}(x) + Q_n(x), \ Q_0(x) = 2, \ Q_1(x) = 2x$$
 (1.2)

and some of their basic properties which will be assumed without specific reference, are discussed by us in [3].

To conserve space, we offer our results in a condensed form. This approach has the added virtue of emphasizing techniques.

Convention: For visual ease and simplicity, we abbreviate the functional notation, e.g., $P_n(x) = P_n$, $Q_n(x) = Q_n$.

2. THE ASSOCIATED MATRICES J AND L

Let

$$J = \begin{bmatrix} P_{4} & P_{2} \\ -P_{2} & -P_{0} \end{bmatrix}, \qquad (2.1)$$

whence, by induction,

 $J^{n} = P_{2}^{n-1} \begin{bmatrix} P_{2n+2} & P_{2n} \\ -P_{2n} & -P_{2n-2} \end{bmatrix}.$ (2.2)

Equating corresponding elements in $J^{m+n} = J^m J^n$ gives

$$P_2 P_{2(m+n)} = P_{2(m+1)} P_{2n} - P_{2m} P_{2(n-1)}.$$
(2.3)

^{*}Walton was given a copy of the Hoggatt and Bicknell-Johnson paper while he was writing his thesis. This paper was only published in 1980.

The characteristic equation of J is

$$\lambda^2 - P_4 \lambda + P_2^2 = 0, \qquad (2.4)$$

so, by the Cayley-Hamilton theorem,

$$J^{2} = P_{4}J - P_{2}^{2}I.$$
(2.5)

Extending (2.5), we have

$$J^{2n+j} = (P_{\mu}J - P_{2}^{2}I)^{n}J^{j}, \qquad (2.6)$$

whence, by (2.2),

.

.

.

$$P_{4n+2j} = \sum_{r'=0}^{n} (-1)^{r} {n \choose r} Q_{2}^{n-r} P_{2n-2r+2j}.$$
(2.7)

From (2.5),

$$P_{4}^{n}J^{n} = (J^{2} + P_{2}^{2}I)^{n}.$$
(2.8)

Equating corresponding matrix elements and simplifying, we get

$$\sum_{r=0}^{n} \binom{n}{r} P_{4r} = Q_2^n P_{2n}.$$
(2.9)

Consider, with appeal to (2.5),

$$(J + P_2 I)^2 = (P_4 + 2P_2)J = 8x(x^2 + 1)J.$$
(2.10)

Hence,

$$\{8x(x^{2}+1)\}^{n}J^{n} = \sum_{r=0}^{2n} {\binom{2n}{r}} P_{2}^{2n-r}J^{r}.$$
(2.11)

Now equate corresponding elements. Simplification then yields

$$\sum_{r=0}^{2n} \binom{2n}{r} P_{2r} = 4^n (x^2 + 1)^n P_{2n}.$$
(2.12)

Next write

$$L = \begin{bmatrix} P_3 & P_1 \\ -P_1 & -P_{-1} \end{bmatrix} \quad (\text{so } |L| = |J| = -4x^2).$$
(2.13)

Then, by (2.2) and (2.13),

$$J^{n}L = P_{2}^{n} \begin{bmatrix} P_{2n+3} & P_{2n+1} \\ -P_{2n+1} & -P_{2n-1} \end{bmatrix},$$
(2.14)

whence

[Feb.

22

$$J^{2n+j}L = \sum_{r=0}^{n} (-1)^{r} \binom{n}{r} P_{2}^{2n} P_{4}^{n-r} J^{n-r+j}L, \qquad (2.15)$$

and so [cf. (2.7)]

$$P_{4n+2j+1} = \sum_{r=0}^{n} (-1)^{r} {n \choose r} Q_{2}^{n-r} P_{2n-2r+2j+1}.$$
(2.16)

From (2.5),

$$P_{4}^{n}J^{n}L = \sum_{r=0}^{n} {n \choose r} P_{2}^{2n-2r}J^{2r}L, \qquad (2.17)$$

whence, by (2.14),

$$\sum_{r=0}^{n} \binom{n}{r} P_{4r+1} = Q_2^{n} P_{2n+1}.$$
(2.18)

Equation (2.10) leads to

$$(J + P_2 I)^{2n} L = \{8x(x^2 + 1)\}^n J^n L,$$
(2.19)

from which

$$\sum_{r=0}^{2n} \binom{2n}{r} P_{2r+1} = 4^n (x^2 + 1)^n P_{2n+1}.$$
(2.20)

Again from (2.10),

$$(J + P_2I)^{2n+1} = \{8x(x^2 + 1)\}^n J^n (J + P_2I).$$
(2.21)

Corresponding entries, when equated, produce

$$\sum_{r=0}^{2n+1} \binom{2n+1}{r} P_{2r} = 4^n (x^2 + 1)^n Q_{2n+1}.$$
(2.22)

Multiply both sides of (2.21) by L. In the usual way,

$$\sum_{r=0}^{2n+1} \binom{2n+1}{r} P_{2r+1} = 4^n (x^2 + 1)^n Q_{2n+2}.$$
(2.23)

Next, from (2.5), after some algebraic manipulation,

$$\{J - (4x^{3} + 2x)I\}^{2n} = (4x^{4})^{n} \cdot 4^{n}(x^{2} + 1)^{n}I, \qquad (2.24)$$

so that

$$\sum_{r=0}^{2n} (-1)^r \binom{2n}{r} (2x^2 + 1)^r P_{4n-2r} = 0$$
(2.25)

$$\sum_{r=0}^{2n} (-1)^r \binom{2n}{r} (2x^2 + 1)^r P_{4n-2r+2} = P_2^{2n+1} (x^2 + 1)^n.$$
 (2.26)

Now multiply (2.24) by L. Consequently,

$$\sum_{r=0}^{2n} (-1)^r \binom{2n}{r} (2x^2 + 1)^r \mathcal{P}_{4n-2r+1} = x^{2n} \{4(x^2 + 1)\}^n.$$
(2.27)
23

1987]

Next, multiply both sides of (2.24) by $J - (4x^3 + 2x)I$. It follows that

$$\sum_{r=0}^{2n+1} (-1)^r \binom{2n+1}{r} (2x^2+1)^r P_{4n-2r+3} = \frac{1}{2} (2x)^{2n+2} (x^2+1)^n.$$
(2.28)

Other results for P_n , some of them quite complicated, may be found in [4], e.g., formulas obtained by considering J^{ns+j} and $J^{ns}L$. One such formula is

$$P_{2n}^{s}P_{2s+1} = \sum_{r=0}^{s} {\binom{s}{r}} P_{2}^{s+r}P_{2n-2}^{r}P_{2n(s-r)+1}.$$
(2.29)

Observe, in passing, that induction leads to

$$L^{n} = P_{2}^{n-1} \begin{bmatrix} P_{n+2} & P_{n} \\ -P_{n} & -P_{n-2} \end{bmatrix}.$$
 (2.30)

3. THE MATRICES K AND M

We are able to derive other identities by defining

$$K = \begin{bmatrix} P_8 & P_4 \\ -P_4 & -P_0 \end{bmatrix}, \quad M = \begin{bmatrix} P_5 & P_1 \\ -P_1 & -P_{-3} \end{bmatrix}, \quad (3.1)$$

and following the techniques used above. The results are listed:

$$K^{n} = P_{4}^{n-1} \begin{bmatrix} P_{4n+4} & P_{4n} \\ -P_{4n} & -P_{4n-4} \end{bmatrix}$$
(3.2)

$$P_{4}P_{4(m+n)} = P_{4(m+1)}P_{4n} - P_{4m}P_{4(n-1)}$$
(3.3)

$$K^{2n} = \left(P_{8}K - P_{4}^{2}I\right)^{n} \tag{3.4}$$

$$P_{4}^{n}P_{8n} = \sum_{r=0}^{n} (-1)^{r} {n \choose r} P_{8}^{n-r} P_{4}^{r} P_{4(n-r)}$$
(3.5)

$$P_{4}^{n}P_{8n+4} = \sum_{r=0}^{n} (-1)^{r} \binom{n}{r} P_{8}^{n-r} P_{4}^{r} P_{4(n+1-r)}$$
(3.6)

$$P_{8}^{n}P_{4n} = P_{4}^{n}\sum_{r=0}^{n} \binom{n}{r} P_{8r}$$
(3.7)

$$\sum_{r=0}^{2n} \binom{2n}{r} P_{4,r} = Q_2^{2n} P_{4,n}$$
(3.8)

$$\sum_{r=0}^{2n+1} \binom{2n+1}{r} P_{4r} = Q_2^{2n+1} P_{4n+2}$$
(3.9)

$$K^{n}M = P_{4}^{n} \begin{bmatrix} P_{4n+5} & P_{4n+1} \\ -P_{4n+1} & -P_{4n-3} \end{bmatrix}$$
(3.10)

[Feb.

24

.

.

.

.

$$\sum_{r=0}^{2n} \binom{2n}{r} P_{4r+1} = Q_2^{2n} P_{4n+1}$$
(3.11)

$$\sum_{r=0}^{2n+1} \binom{2n+1}{r} P_{4r+1} = Q_2^{2n+1} P_{4n+3}$$
(3.12)

$$M^{n} = P_{4}^{n-1} \begin{bmatrix} P_{n+4} & P_{n} \\ -P_{n} & -P_{n-4} \end{bmatrix}$$
(3.13)

Additional information on the matrix K is given in Mahon [4].

4. THE MATRICES N AND U

In like manner, by defining the matrices

$$N = \begin{bmatrix} P_{6} & P_{2} \\ -P_{2} & -P_{-2} \end{bmatrix}, \quad U = \begin{bmatrix} P_{7} & P_{3} \\ -P_{3} & -P_{-1} \end{bmatrix}, \quad (4.1)$$

and again using techniques similar to those above, we prove further identities which are listed:

$$K^{n}N = P_{4}^{n} \begin{bmatrix} P_{4n+6} & P_{4n+2} \\ -P_{4n+2} & -P_{4n-2} \end{bmatrix}$$
(4.2)

$$\sum_{r=0}^{2n} \binom{2n}{r} P_{4r+2} = Q_2^{2n} P_{4n+2}$$
(4.3)

$$\sum_{r=0}^{2n+1} \binom{2n+1}{r} P_{4r+2} = Q_2^{2n+1} P_{4n+4}$$
(4.4)

$$K^{n}U = P_{4}^{n} \begin{bmatrix} P_{4n+7} & P_{4n+3} \\ -P_{4n+3} & -P_{4n-1} \end{bmatrix}$$
(4.5)

$$\sum_{r=0}^{2n} \binom{2n}{r} P_{4r+3} = Q_2^{2n} P_{4n+3}$$
(4.6)

$$\sum_{r=0}^{2n+1} \binom{2n+1}{r} P_{4r+3} = Q_2^{2n+1} P_{4n+5}$$
(4.7)

See [4] for further, more complicated results.

From what has been said in the above sections, it appears that there is a chain of matrices of the type given which would produce formulas of (perhaps). minor interest.

1987]

5. THE MATRIX W

We now introduce a matrix having the property of generating Pell and Pell-Lucas polynomials simultaneously. It was suggested by a problem proposed by Ferns [1].

$$W = \begin{bmatrix} 2x & 1 \\ 4(x^2 + 1) & 2x \end{bmatrix} \quad (|W| = -4).$$
(5.1)

Induction leads to

$$W^{n} = 2^{n-1} \begin{bmatrix} Q_{n} & P_{n} \\ 4(x^{2} + 1)P_{n} & Q_{n} \end{bmatrix}.$$
 (5.2)

Then

$$W^{n}\begin{bmatrix}0\\2\end{bmatrix} = 2^{n}\begin{bmatrix}P_{n}\\Q_{n}\end{bmatrix}.$$
(5.3)

Now

$$W^{m+n} = 2^{m+n-1} \begin{bmatrix} Q_{m+n} & P_{m+n} \\ 4(x^2 + 1)P_{m+n} & Q_{m+n} \end{bmatrix}$$
by (5.2) (5.4)

$$= 2^{m+n-2} \begin{bmatrix} Q_m & P_m \\ 4(x^2+1)P_m & Q_m \end{bmatrix} \begin{bmatrix} Q_n & P_n \\ 4(x^2+1)P_n & Q_n \end{bmatrix}$$
 by (5.2) also.

Corresponding entries give formulas (3.18) and (3.19) for P_{m+n} and Q_{m+n} , respectively, appearing in [3].

The characteristic equation for W is

$$\lambda^2 - 4x\lambda - 4 = 0, \qquad (5.5)$$

whence, by the Cayley-Hamilton theorem,

$$W^2 - 4xW - 4I = 0, (5.6)$$

so

$$W^{2n} = 4^n (xW + I)^n. (5.7)$$

Algebraic manipulation, after multiplication by W^{j} , produces the formulas for P_{2n+j} and Q_{2n+j} , (3.28) and (3.29), in [3]. Induction, with the aid of (5.6), yields

$$W^{n} = 2^{n-1} (P_{n}W + 2P_{n-1}I).$$
(5.8)

Considering W^{ns+j} and tidying up, we have

$$W^{ns+j} = 2^{(n-1)s} \sum_{r=0}^{s} {s \choose r} P_{n-1}^{r} P_{n-1}^{s-r} 2^{s-r} W^{r+j},$$
(5.9)

giving

[Feb.

26

and

$$P_{ns+j} = \sum_{r=0}^{s} {\binom{s}{r}} P_{n-1}^{r} P_{n-1}^{s-r} P_{r+j},$$
(5.10)

$$Q_{ns+j} = \sum_{r=0}^{s} {\binom{s}{r}} P_{n-1}^{r} Q_{r+j}^{s-r} Q_{r+j}^{s-r}$$
(5.11)

Further,

$$\sum_{r=0}^{2n} \binom{2n}{r} (xW)^{r+j} 2^{2n-r} = (xW + 2I)^{2n} W^{j}$$
$$= (x^{2}W^{2} + 4xW + 4I)^{n} W^{j}$$
$$= (x^{2} + 1)^{n} W^{2n+j}, \text{ by (5.6).}$$
(5.12)

Accordingly,

$$\sum_{r=0}^{2n} \binom{2n}{r} x^r P_{r+j} = (x^2 + 1)^n P_{2n+j}$$
(5.13)

and

$$\sum_{r=0}^{2n} \binom{2n}{r} x^r Q_{r+j} = (x^2 + 1)^n Q_{2n+j}.$$
(5.14)

From (5.12),

$$\sum_{r=0}^{2n+1} {\binom{2n+1}{r}} (xW)^r 2^{2n+1-r} = (x^2+1)^n W^{2n} (xW+2I)$$
(5.15)

and we deduce

$$\sum_{r=0}^{2n+1} {\binom{2n+1}{r}} x^r \mathcal{P}_r = \frac{1}{2} {(x^2+1)}^n Q_{2n+1}$$
(5.16)

and

$$\sum_{r=0}^{2n+1} {2n+1 \choose r} x^r Q_r = 2(x^2+1)^{n+1} P_{2n+1}.$$
(5.17)

Also, from (5.6),

$$(4xW)^n = (W^2 - 4I)^n, (5.18)$$

whence

$$(2x)^{n} P_{n} = \sum_{r=0}^{n} (-1)^{r} {n \choose r} P_{2n-2r}$$
(5.19)

and

$$(2x)^{n}Q_{n} = \sum_{r=0}^{n} (-1)^{r} \binom{n}{r} Q_{2n-2r}.$$
(5.20)

Let us revert momentarily to (5.8).

Rearrange (5.8) and raise to the s^{th} power to obtain

$$2^{(n-1)s} P_n^s W^s = \sum_{r=0}^s (-1)^r {\binom{s}{r}} 2^{nr} P_{n-1}^r W^{n(s-r)}.$$
(5.21)

Identities such as

$$P_{n}^{s}Q_{s} = \sum_{r=0}^{s} (-1)^{r} {s \choose r} P_{n-1}^{r}Q_{n(s-r)}$$
(5.22)

1987]

27

and

$${}^{s}P_{s+j} = \sum_{r=0}^{s} (-1)^{r} {\binom{s}{r}} P_{n-1}^{r} P_{n(s-r)+j}$$
(5.23)

flow from (5.21).

Ρ

The above information, together with complementary material in [5], offers some details of the finite summation of Pell and Pell-Lucas polynomials by means of matrices. Clearly, the topics treated are far from complete. For instance, (5.1) extends naturally to

$$W_m = \begin{bmatrix} Q_m & 1 \\ Q_m^2 + 4(-1)^{m-1} & Q_m \end{bmatrix} \quad [|W_m| = 4(-1)^m],$$
(5.24)

from which new properties of our polynomials may be derived. Enough has been said, however, to indicate techniques for further development.

REFERENCES

- H. H. Ferns. Problem B-115. The Fibonacci Quarterly 6, no. 1 (1968):92.
 V. E. Hoggatt, Jr., & M. Bicknell-Johnson. "A Matrix Generation of Fibonacci Identities for F_{2nk} ." A Collection of Manuscripts Related to the Fibonacci Sequence, pp. 114-124. The Fibonacci Association, 1980. A. F. Horadam & Bro. J. M. Mahon. "Pell and Pell-Lucas Polynomials." The
- 3. Fibonacci Quarterly 23, no. 1 (1985):7-20.
- 4. "Pell Polynomials." M.A. (Hons.) Thesis, University of Bro. J. M. Mahon. New England, 1984.
- Bro. J. M. Mahon & A. F. Horadam. "Matrix and Other Summation Techniques for Pell Polynomials." *The Fibonacci Quarterly* 24, no. 4 (1986):290-308. 5.
- J. E. Walton. "Properties of Second Order Recurrence Relations." M.SC. 6. Thesis, University of New England, 1968.
