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1, INTRODUCTION 

By defining certain matrices of order 2, we are enabled to derive fresh 
properties of Pell polynomials Pn(x) and Pell-Lucas polynomials Qn(x) addi-
tional to those obtained by us in [5], Our work, in summarized form, is an 
adaptation and extension of some ideas of Walton [6], based on earlier work by 
Hoggatt and Bicknell-Johnson [2].* 

The Pell and Pell-Lucas polynomials which are defined, respectively, by the 
recurrence relations 

and 
Pn + 2(oc) = 2xPn+1(x) + Pn(x), PQ(x) = 0, P1(x) = 1 

Qn + 2(x) = 2xQn + 1(x) + Qn(x)i QQ(x) = 2, Q^x) = 2x 

(1.1) 

(1.2) 

and some of their basic properties which will be assumed without specific ref-
erence, are discussed by us in [3]. 

To conserve space, we offer our results in a condensed form. This approach 
has the added virtue of emphasizing techniques. 

Convention: For visual ease and simplicity, we abbreviate the functional nota-
tion, e.g., Pn(x) = Pn5 Qn(x) = Qn. 

2. THE ASSOCIATED MATRICES J AND L 

Let 

J -P -P 
2 0 

(2.1) 

whence, by induction, 

Jn 

-Po -p„ 
(2.2) 

Equating corresponding elements in J m-j-n _ jirij-n J'"Jn gives 

P P 
2 2(m + n) 

P P 
2(m + l) 2n 

P P 
L 2m 2 ( n - l ) s 

(2.3) 

Walton was given a copy of the Hoggatt and Bicknell-Johnson paper while he 
was writing his thesis. This paper was only published in 1980. 
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The characteristic equation of J is 

X2 - Ph\ + Pz = 0, 

so, by the Cayley-Hamilton theorem, 

J2 = P J - P2I. 
k 2 

Extending ( 2 . 5 ) , we have 

jln + j = _ p2J)njJj 

whence, by (2.2), 

From (2.5), 

p ; j n = ( J Z + p 2 j ) r 

Equating corresponding matrix elements and simplifying, we get 

Consider, with appeal to (2.5), 

Hence, 

(J + P2I)Z = (Ph + 2P2)J = Sx(xz + I) J. 

{8x(x2 + 1)}V = Z (2")P22n"^ 
r= 0 X ' 

Now equate corresponding elements. Simplification then yields 

In 

E 
Next write 

2n 0 

£(2w)po = 4"(x2 + 1)"P, . 

L = 
?3 ?1 

(so |£| = \J\ = -4x2), 

Then, by (2.2) and (2.13), 

JnL = P" 
P P 

2n+3 2rc+l 

-P -P 
2n+l In-1 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

whence 
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PELL POLYNOMIAL MATRICES 

J2n + JL = £ {-iyln)pfpn
h-rjn-r + JLf ( 2 _ 1 5 ) 

r=0 X P / 

and so [cf . ( 2 . 7 ) ] 

P4n+2j + l = L C " 1 ) ( p ) ^ 2 P 2 n - 2 2 > + 2 j + l ° ( 2 . 1 6 ) 
p = 0 

From ( 2 . 5 ) , 

Vn
hJnL 

r=0 
Z (l)P?-2PJ*»L, ( 2 .17 ) 

whence, by ( 2 . 1 4 ) , 

t(l)Pfyr+1-Qn
2P2n+1- (2-18) 

i> = 0 x ' 

Equat ion (2 .10) l e a d s to 
(J + P2I)2nL = {8x(x2 + l)}nJnL, ( 2 .19 ) 

S ( 2
p

n ) P 2 , + i = ^ ( * 2 + D n P 2 n + 1 . (2 .20) 

from which 

In 

E 
p = 0 x 

Again from ( 2 . 1 0 ) , 
(J + P 2 J ) 2 n + 1 = {8x(x2 + l ) } V n ( J + P 2 J ) . (2 .21) 

Corresponding entries, when equated, produce 

" E 1 ^ > 2 r = 4"(x2 + l)"e2B + 1. (2.22) 
r= 0 x z ' 

Mul t ip ly both s i d e s of (2 .21) by L. In t h e u s u a l way, 

2%{2n+ > 2 r + 1 = 4*(*2 + l ) " « 2 n + 2 . ( 2 .23 ) 

Next, from (2.5), after some algebraic manipulation, 

{J - (4:c3 + 2x)l}2n = (4^)* • 4n(*2 + l)nJ, (2.24) 

so that 

E(-Dr(2,nW + l)>P^_2r = 0 (2.25) 
r = 0 x z ' 

and 

E V i r P ) ^ + lYPhn_2r+2 = Pf+1(s2 + 1) \ (2.26) 

Now multiply (2.24) by L. Consequently, 

L(-lf(2r)(2x2 + D r P t e . 2 r + 1 = * 2 * { 4 ( * 2 + 1 ) } " . (2 .27 ) 
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Next, multiply both sides of (2.24) by J - (4ar + 2a;)J. It follows that 

2n + 1 

E 
r=0 

*Z\-D'(2n+ 1 ) (2x 2 + D r P ^ . 2 r + 3 = k(2x)2n + Hx2 + l)n. (2.28) 

Other r e s u l t s f o r Pn, some of them q u i t e compl i ca t ed , may be found in [ 4 ] , 
e . g . , formulas ob t a ined by c o n s i d e r i n g Jns+J and JnsL. One such formula i s 

Ps P = y (S)PS+VPI> P 
2n 28 + 1 ^ \ r / 2 2 n - 2 . 2n(s -2*)+l ' 

Observe, in passing, that induction leads to 

Ln = p„-i 
n + 2 « 

3. THE MATRICES K AND M 

We are able to derive other identities by defining 

K 
P P 

-P -P , M 
P P 

-P -P 

and following the techniques used above. The results are listed: 

Rn = pn-l 
P P hn+h hn 
-p -p 

P P = P P - P P 
h h{m + n) h{m+±) hn hm * t (n - l ) 

Z2" = (P8Z - P 2 J ) n 

pnp = F r - n r f n , \ p n - p P p p 
2»= 0 

p w p = v r-i vp/n^pn"pprp 
^1^8*1+if ^ V ; \ p / 8 "tS(n + l-r) 

PnP = pn V | w ) p 
8 hn h £-* \ V I 8r 

y (2n\p = n2np 
,_ n \P / t+r 2 4n 

? + 1 . 
y I2n+ 1\ __ nm+ip 

p = 0 
2rc + 1 

p= 0 

KnM = P* 
P P 

iin+ 5 4 » + i 
-P - P 

(2 .29) 

(2.30) 

(3 .1 ) 

(3.2) 

(3.3) 

(3.4) 

( 3 . 5 ) 

(3 .6 ) 

(3 .7 ) 

(3 .8 ) 

( 3 . 9 ) 

(3 .10) 
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T (2n)p = 02nP 

V t 1 ( 2 n + 1 \ = Q2n+lp 
2rc + 1 

E 
r= 0 

M n = Pn_1 
P P 

~P„ -P 

(3.11) 

(3.12) 

(3.13) 

Additional information on the matrix K is given in Mahon [4]. 

h. THE MATRICES N AND U 

In like manner, by defining the matrices 

P P 

-P -P 
2 -2 

, tf 
p . 

-p - p 
3 -1 

(4.1) 

and again using techniques similar to those aboves we prove further identities 
which are listed: 

KnN = P 

In 

P P 
«m+6 hn+2 

-P -P 
hn+2 hn -2 

2(?K.,-< 
~ n \ v )rhv + : 

r = 0 

2n+ 1 

r = 0 ^72 +4-

P P 
4n+7 4n+3 

-P -P 
*m+3 4n-l 

2n+ 1 

E 
r= 0 

' "tn+ 5 

(4.2) 

(A.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

See [4] for further, more complicated results-

From what has been said in the above sections, it appears that there is a 
chain of matrices of the type given which would produce formulas of (perhaps)-
minor interest. 
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5. THE MATRIX W 

We now introduce a matrix having the property of generating Pell and Pell-
Lucas polynomials simultaneously* It was suggested by a problem proposed by 
Ferns [1], 

W 
2x 1 

_4(x2 + 1) 2x_ 

Induction leads to 

W7 
i,{x2 + l)Pn 

Then 

Now 

0 

_2_ 
= 2n P"l 

_«„_ 

7m+n _ 0m+n-l 

(\W\ = -4). 

4(^2 + l)Pw+n 
by (5.2) 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

4(x2 + D P , 4(^2 + l)Pn 
by (5.2) also. 

Corresponding entries give formulas (3.18) and (3.19) for Pm+n and Qm+ns 
respectively, appearing in [3]. 

The characteristic equation for W is 

A2 - kx\ - 4 = 0S 

whences by the Cayley-Hamilton theorem, 

Wz hxW - 4J = 0, 

W2n = kn{xW + T) n. 

(5.5) 

(5.6) 

(5.7) 

Algebraic manipulation, after multiplication by WJ, produces the formulas 
f o r pzn + j a n d Szn+y* (3.28) and (3.29), in [3], 

Inductions with the aid of (5.6), yields 

wn = 2
n'1(PnW + 2P„.1J). 

Considering Wns+J and tidying up, we have 

wna+j = 2(w-l)s V / s \p2'pe~2'2s"P^P + ji 

(5.8) 

(5.9) 

givxng 
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•w = 0 

i {Sr)KK:X+r (5-11) 
and 

r= 0 

Further, 
2n 
£ ( 2

p
n ) ( ^ ) P + J ' 2 2 n - p = (xW + 2I)2nWJ' 

= 0c2 J/2 + 4#J/ + 4J ) n ^ J ' 
= (x2 + l)ntf2n+^, by (5 .6 ) . (5.12) 

and 
2n 

Accordingly, 

2n 
C 
= 0 

2n 
r = 0 

From (5,12) , 
2n+ 1 

E 
and we deduce 

2n+ 1 

E 
p = 0 

and 
2w + 1 

•> = 0 

E( 2
r >^ + , = (*2 + l)"fl2 f > +^ (5.W) 

i + 1 
E ( 2 w + 1 ) ( x & 0 r 2 2 n + 1 - r = (x2 + l)nW2n(xW+ 21) (5.15) 

E ( 2 n
r

+ V ^ = ^ 2 + DBe2„+i <5-16) 

= 0 N ' 

E P + ^ ' O , = 2(x2 + D n + 1 P 2 B + 1 . (5-17) 
p = 0 ' 

Alsos from (5 .6 ) , 

(teW)n = (W2 - 4 J ) n , (5.18) 
whence 

and 
(2x)nPn = E ( - D r ( ; ) P 2 „ . 2 l . (5-19) 

r = 0 x ' 

(2*)*<3n = E ( - D r ( " ) « 2 n . 2 2 , . (5-20) 
T» = n x ' 2? = 0 

Let us revert momentarily to (5 .8 ) . 
Rearrange (5.8) and ra i se to the sth power to obtain 

2{n~l-)spsw8 = £ (-l)r(S) 2nrP* Wn(S~r) . (5.21)' 
r = 0 

I d e n t i t i e s such as 

P„\ = E ( - l ) ' ( r ) C l « n ( 8 . r , (5-22> 
r = 0 v ' 
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and 

PSP . = T (-l)r(S\pr P (5.23) 

flow from (5.21). 
The above information, together with complementary material in [5], offers 

some details of the finite summation of Pell and Pell-Lucas polynomials by 
means of matrices. Clearly, the topics treated are far from complete. For in-
stance, (5.1) extends naturally to 

W 
2m l 

f + 4( - i r 
[|^l= 4(-l)m], (5.24) 

from which new properties of our polynomials may be derived. Enough has been 
said, however, to indicate techniques for further development. 
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