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1. INTRODUCTION 

The object of this paper is to investigate, by using a variety of methods, 
the properties of Pell polynomials Pn(x) and the Pell-Lucas polynomials Qn(x) 
[6] which are derivable from their generating functions. Brief acquaintance 
with the main aspects of [6] is desirable. 

In an endeavor to conserve space, we will generally offer only an indica-
tion of the potential developments with a minimum of results, so that just a 
representative sample of the material available is presented. Omitted informa-
tion will be happily supplied on request. Among the many facets of this expo-
sitions we find the sections numbered 4 and 5 especially appealing.. 

For visual conveniences the functional notation will be suppressed and an 
abbreviated notation used9 e.g., Pn(x) = Pn, Qn(x) = Qn. 

First, we introduce the notation 

P(j\ m9 k$ xs y) = E p£. + k y r > (1-1) 
r= 0 

Qti* rns k, x5 y) = £ e ^ + fc2/P- f1-2) 
r = 0 

Then3 for example, by difference equations [6], 

P(l, 1, 0, x9 y) = 2/A (1.3) 

or, equivalently, 

P(l, 1, 1, x9 y) = A = E Pr + 1yT* d-4) 
p = o 

and 

«(1, 1, 0, x9 y) = (2 - 2xy)k (1-5> 

or, equivalently, 

«(1, 1, 1, x9 y) = (2x + 2z/)A = E «r + 12/1,» ( l o 6 > 
p= 0 

in all of which 

A = (1 - Ixy - y2)-1 = A (a?, z/, 1, 1) [cf. (1.8)]. (1.7) 

Result (1.4), for example, may also be obtained using the method of column 
generators [1] with the aid of binomial coefficient expressions for Pn given 
in [7]. Matrices and Binet forms may also be utilized (see [7]) in establish-
ing (1.3)-(1.6). 
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Let us introduce the symbolism 

(7") 

A ^ = A Or, ys j, m) 

[cf. (1.13)] in which the superscript and subscript will be suppressed when j 
1 and/or m = 1, e.g., A ^ = A [cf. (1.7)] and 

1{m) (1 y + (-i)rV) = A(x9 2/, 1, m) 
whence (1.7) follows when m = 1. Replacing 2/ by -z/, we write 

A(fw) = A(ar, -y9 1, m). 

Furthermore, with m = 1, let 

(J) 
j+1 P(P+ i) 

E (~1) 2 {J + 1, r}y* 
r=0 

Aw' = A (a:, y9 j\ 1) 

where the symbol {a, 2?}, defined in [8] , is 

{a, 
a l i b \ / a-b 

Thuss in particulars from (1.10) and (1.11), 

A = (1 - Py - z/2)"1 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

as in (1.7) 
A(2) (1 - P3y - P3yz + J/3)" (1 .12) 
i<3> = 

More g e n e r a l l y , 

Aw = (1 - Phy - {P^PJP^Jy2 + py + 2 /V 1 

4«) 7 +1 r[m(r- 1) + 2] 
£ (-1) 2 {j + 1, 2>}mt/r 

in which 

ia^}m=UPim/(^ 

(1.13) 

(1.14) 

The case J = 1 occurs in (1.8) , while the case m = 1 occurs in (1.10)< 
Later, in (6.6), we refer to the case J = 3, i.e., to A((m). 

Some useful results from [7] are collected here for later reference: 

HnHv ? even, 

4(x2 + l)PnPr r odd. 

P2 - (hx2 + 2)P2 + P2 , = 2(-l)*. 
n+l n n-1 

Also important for our matrix treatment are (see [6]): 

~2x 1 

1 0 

(1.15) 

(1.16) 

(1.17) 

(1.18) 
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pn 
P P 

P„ P 
so \Pn\ = (~l)n0 (1.19) 

Consult [6]s [7], and [8] for details of some of the applications of P. 

2. APPLICATIONS OF GENERATING FUNCTIONS 

Using (1.17) as a difference equation, we find eventually that 

P(l, m, k, x9 y) = [Pk + {-l)kPm_ky]^my (2.1) 

Similarlya 

Q(l} m, k, xs y) = [Qk + ("l)k"1eOT.k2/]A(OT). (2.2) 

The specializations given in (1.3) and (1.5) follow immediately. Numerous 
other specializations of some interest, e.g., those for 

P(l, 2, 0, x9 z/), P(l, 2, 1, x, 2/), P(l, 35 3S x, -y) 

and §(1, 2, 1, x9 -y), 

are listed in [7]. 
Differentiating (1.4) with respect to y9 we obtain 

X > P y1"1^ (2x + 2z/)A2 
p= o p + 1 

Likewise 

E ^ + 12/2"1= [4a;2 + 2 + te/ + 2z/2]/ 
r = 0 

(2.3) 

(2.4) 

Replacing y by -z/ gives generating functions of some importance. Results 
(2.3) and (2.4) may be extended if we differentiate (2.1) and (2.2) w.r.t. z/, 
but the process is somewhat algebraically messy. 

Now, (2.3) leads to an interesting summation. With (1.4) and (1.6) it gives 

r=0 Eo^^-H-

(r + DPr+2 = E p , e r + 2 . . . 

Equate coefficients of yr on both sides, thus obtaining 

r+ 1 

Next, differentiate (1.5) w.r.t. y. Then 

£(r + D C ^ ^ ' = (2x + 42/ - 2xz/2)A2. 
r = o 

(2.5) 

(2.6) 

(2.7) 

Combining (1.4) and (2.7), we find 
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£ ( r + DQr + 1yr - £ (r + 1) Pr + 2yr = J/(2 - 2a;j/)A2 (2.8) 
p = 0 r = 0 

by (1.3) and (1.5). 
Equate coefficients to get 

p= 0 I fP = 0 

(r + D(fir+1 - P r + 2) = EPfSr-i- (2-9) 
I = 0 

Differentiating in (1.3) w.r.t. 2/, then multiplying by y 9 we determine a 
generating function for rPr, namely, 

E ^ P f = z/(l + z/2)A2. (2.10) 

Similarly, 

E ^ f = (2xy + 4z/2 - 2x2/3)A2. (2.11) 
p = 0 

Generating functions may be used to derive already known properties of 
Pell polynomials, e.g., 

ZQun = (2 - 2xy)A by (1.5) 
n = 0 n 

= A + (1 - 2xy)A 

= E ^ , * / n + I > n ^ n by (1.4) and (2.1), 
n=0 n + i n*=0 

whence Qn = P n + 1 + Pn_>1 [6 , equa t ion ( 2 . 1 ) ] . 

Moreover, we may show that 

Q(l9 1, 1, xs y) + S(l, 1, -1, x, y) = 4(x2 + 1)P(1, 1, 0, x, y) 9 

whence Qn + 1 + Qn_± = 40r2 + 1)P„ [cf. (1.15)]. 

New, but less elementary, identities may also be established. For instance, 

n-o 

= [(2 - 2xy)Qm,1 + (2x + 2z/)§JA by (1.5) and (1.6) 

- [(2xQm+2Qm_1) + (2Cm- 2^_1)z/]A 

= 4(«2 + 1)(P„ + t/P^^A 

by (1.13) and the recurrence relation for Qm. 
Terms in y n being equated, we derive 

«A-i + « B + A = 4<*2 + 1 ) P — (2-12) 

48 [Feb. 



ORDINARY GENERATING FUNCTIONS FOR PELL POLYNOMIALS 

Following the technique of Serkland [9] for Pell numbers, we can also es-
tablish fresh identities involving Pell polynomials. See [7] for details. A 
representative result incorporating this process is 

w-l 
PuPvPw = ^*^P

u+v + w-kPk + l " Pu + k + lPv + w~kf° (2A3) 

F i n i t e s e r i e s may be summed us ing a g e n e r a t i n g f u n c t i o n . To i l l u s t r a t e 
t h i s c o n t e n t i o n 5 choose 

m oo a, 

Epry = Zpry* - LPr+m+1yr 

r = 1 r = 0 P = o 

= 2/{l ~ (p
m+1 + 2/Pm)}A by (1.3) and (2.1). 

Then, y = 1 gives equation (2.11) in [6]. 
Ideas of Hoggatt [2] in relation to Fibonacci and Lucas numbers may be ex-

tended to generators of Pell polynomials. For example, 

±^(x2 + l)kP2k+1y2k+1 (2 .14) 

= yP(l, 2, 1, x, 4 ( x 2 + l) ,y2) by (1 .1 ) 

= yz{l - 40c 2 + l)y2}<5(2) by (2 .1 ) 

and 

E 4 k 0 r 2 + DkQ2k + 2y2k+2 (2 .15) 

= y2Q(l5 2 , 2 , x, h{x2 + l)y2) by (1 .2 ) 

= z/2{(4^2 + 2) - 8y2(x2 + 1)}6( 2 ) by (2 .2 ) 

where , i n (2 .14) and ( 2 . 1 5 ) , 6(2) means A(2) w i th y r e p l a c e d by 4 (a?2 + l)y [cf . 
( 1 . 8 ) ] . 

Add (2 .14) and ( 2 . 1 5 ) . S impl i fy ing , we a r e l e f t wi th 

L 4 ^ 2
 + l ) * { P 2 k + 1 + , e 2 k + 2 } ^ + 1 (2 .16) 

k - 0 

y - 2y2 

1 - h{X2 + 1)2/ + 4(X2 + 1)2/' 

Further details appear in [7]. 

3, ELEMENTARY RELATIONS AMONG GENERATING FUNCTIONS 

Analogous relations to those among polynomials may be determined for gene-
rating functions. Consider, for instance, the derivation of the recurrence 
relation 
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P(l, 1, n + 2, xs y) = (Pn+ 2 + z/Pn+1)A by (2.1) (3.1) 

= (2^{Pn+1 + z/Pn} + Pn + 2/Pn-1)A by the definition 
of Pn 

= 2^P(1S 1, n + 1, x9 y) + P(l, 1, n9 x, y) by (2.1). 

Likewise, 

Q(l9 1, n + 29 x9 2/) = 2a#(l, 1, n + 1, ̂ 5 z/) + «(1, 1, n9 x, z/). (3.2) 

It might be noted that the direct generating function analogue of 

«„ = P n + l
 +Pn-1 

flows almost immediately from (2.1) and (2.2). 
Matrix representations of the generating functions are, in the notation of 

[8] for the matrix P9 

P(l9 1, n9 x, y) 

[_P(1S 1, n - 1, x, y)_ 

P(l9 1, 1, x, y) 

_P(15 1, 09 x9 z/)J 
(3.3) 

§(1, 1, n, x, y) 

Q(l9 1, n - 1, x, z/)J 

5(1, 1, 1, ̂ 9 y) 

_Q(19 1, 0, a:, i/)J 
(3.4) 

P(l, 1, n, x9 y) = [1 0]P" 
P(l, 1, 1, x9 z/) 

_P(19 1, 09 x, z/)J 
(3.5) 

«(1, 1, n9 x, z/) = [1 0]P" 
S(l, l, 1, x9 y) 

\_Q(l9 1, 09 x9 z/)_ 
(3.6) 

Now let us apply these matrices to obtain formulas for Pell and Pell-Lucas 
generating functions. First, 

>m + n- 1 Q(l, 1, m + n, x, y) = [1 0]P' 

= tpm
 P,-J 

6 ( 1 . 1, 1, a?9 2/) 

LG(1, 1, 0, ;r9 z/)J 

5(1, 1, n + 1, #9 z/) 

§(19 1, n, x9 y) 

by (3.6) (3.7) 

by (3.4) and 
(1-19) 

= PmQ(ls 1, n + 1, x9 y) + Pm_1Q(l9 1, n9 x9 y). 

A similar formula pertains to P(l, l9 m + n9 x9 y) 9 viz.9 

P(l, 1, w + n 9 ^ 9 y) = PmP(l9 1, n + 1 , a:, y) + P P(l, 1, n, x9 y) . (3.8) 
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Of course, (3.1) and (3.2) are special cases of (3.7) and (3.8) when m = 2. 
Representative of another set of results is 

P(l, 1, m + ns xs y) + (-l)nP(l, 1, m ~ ns x5 y) = «„P(1, 1, w, xs z/) 

Analogues of Sims on fs formulas can be established. Thus3 

P2(l2 1, n5 x5 y) - P'(l, 1, n + 1, a?, */)P(l, 1, n - 1, a;, z/) 

|P(1, Is n3 #, z/) P(ls 1? n + 1, x5 z/) I 

|P(1, 1, n - 1, xs y) P(l, 1, n§ #, z/) 

(3.9) 

(3.10) 

Pn 
P(l, 1, 1, a?s z/) 

_P(19 1, 05 xs z/)J 
pn by (3.3) 

by 
(1.18) 

P(l, 1, 1, x5 y)~ 

[P(l, 1, 0S as, y)_ 

|P(1, 1, 1, xs z/) 2xP(l3 1, 1, a?5 y) + P(l, 1, 0S x, y)\ 
= I P " - 1 I 

|P(1, 1, 05 x, z/) P(l, 1, 1, xs y) 

= (-l)n-1{P2(ls 1, 1, x, y) - P'(l, 1, 29 x, z/)P(l, 1, 0S x, z/)} by (3.1) 

= (-l)""^! - 2xy - z/2)A2 by (1.3), (1,4), and (2.1) 

= (-1)^-^(1, 1, 1, x9 y) by (2,1). 

Similarly, 

Q2(l5 1, «, x5 y) - 5(1, 1, n + 1, a?3 2/)S(l» 1, n - 1, xs z/) 

= 4(ar2 + 1)P(1, 1, 1, x, y). (3.11) 

More complicated algebra, with the use of the above method, produces the 
generalized Simson?s formula analogues, namely, 

and 

P2(l5 1, n, x, y) - P(l, 1, n + r3 x, z/)P(l, 1, w - r, a?, y) 

= (-l^-'P^Pd, 1, 1, x9 y) 

l(l, 1, n5 xs z/) - $(1, 1, w + r, x$ y)Q(l> 1» « ra 2% #» 2/) 

(3.12) 

(3.13) 

(»lf l4(*2 + 1)P2P(1, 1, 1, xs y). 

Other interesting results may be established by the methods exhibited, for 
example^ 

P(l, 1, In, x9 y) = j{PnQ(l, 1, n3 x3 y) + «„P(1, 1, n, x3 y)}. (3.14) 

The above information represents a small sample of knowledge available to 
us. However, the algebra becomes quite awkward when the more general generat-
ing functions (2.1) and (2.2) are exploited in that context. 
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k. SUMS OF GENERATING FUNCTIONS 

Let us now consider series whose terms are generating functions. 

Summing in (3.1) used as a difference equation and tidying up, we come to 

£P(1, 1, rs x9 y) = {P(l, 15 n + 1, x9 y) + P(l, 1, n, xs y) 
r= 1 

- P(l, 1, 1, x9 y) - P(l, 1, 05 x, y)}/2x. 

(4.1) 

For variations consider next a matrix approach. Accordingly, by (3.6) 
applied repeatedly, 

£ 6(1, 1, r, x, z/) 
p= l 

= [1 0][J + P + P2 + ••• + P""1] 

(4.2) 

6(1, 1, l, ̂ , y) 

_6(1, 1, 0, x, y)_ 

2x [1 0] 
P + P - 1 P + P n+l n « n-l 
P + P - 1 P + P - 2a; - 1 
n n-l n-i n-2 

l 11 g(i, i, i, x, y) 

_6(1, 1, 0, a?, z/)_ 

= {Q(l9 1, n + 1, x, z/) + <3(1, 1, n, x, z/) - 6(1, 1, 1, x9 y) 

- Q(l9 1, 0, x9 y)}/2x9 

by (3.7), (1.19), and [6, equation (2.11)]. 
Parallel treatments produce 

E(-1)PP(1, 1, rs x9 y) (4.3) 

{(~l)nP(l, 1, n + 1, x, y) + (-ly^Pd, 1, n, a;, z/) 

- P(l, 1, 1, xs y) + P(l, 1, 0, x9 y)}/2x 

and 

E (-l)P<g(l, 1, r9 x9 y) 
r= 1 

(4.4) 

= {(-l)n6(l5 1, n + 1, x, z/) + H f - ^ C l , 1, n, x9 y) 

- «(1, 1, 1, x9 y) + 6(1, 1, 0, x9 y)}/2x. 

Extensions of the above theory may be exhibited (see [7]) for 

P(l, m9 mr + k9 x9 y9 z) = £ P(l» ^> ?ra? + &, x9 y)zr 

p = 0 

(4.5) 

with a similar formulation for the Pell-Lucas generating functions. 
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5Q GENERATING FUNCTIONS FOR SECOND POWERS OF PELL POLYNOMIALS 

Exploiting (1*16) as a difference equation, we may demonstrate that, ulti-
mately 9 

(1 - Q2y +y2)tp*yr (5.1) 
2»= 0 

= -y + 2z/ - 2z/2 + 2y3 - ... + 2<-l)*-y + ... 

- v - y2 

i +y ' 
whence 

t PVV*- ^ - ^ , (5.2) 
r = 0 1 - (4a;2 + 1)2/ - (Ax2 + l)y2 + y 3 

that is, 

P(2, 1, 09 a;, y) = (y - z/2)A(2) by (1.12). (5.2) f 

Similarly, 

§(2, 1, 0, x9 y) = (4 - (12a;2 +.4)2/ - 4aj27/2)A(2). (5.3) 

One may also show that 

i > r + r P „ + 2 2 / r = 2xA(2) (5.4) 
p= 0 

and 
XX + A + 22/P = 2*{(te2 + 2) + 2(4*2 + 2)y - 2z/2}A(2}. (5.5) 

r= o 
Generalizations of (5.2) and (5.3) to expressions for P(2, 1, m9 x9 y) and 

g(29 1, m9 x9 y) are obtainable (see [7]). In particular, 

P(2, 1, 1, x9 y) - (1 - z/)A(2), (5.6) 

while 
Q(29 1, 2, a?, z/) = {(4a;2 + 2 ) 2 + (16^ + kx2 - 4)z/ - 4a;2z/2}A(2). (5.7) 

Note in passing the marginally useful result that 

P(2, 1, 1, x9 y) - P(2, 1, 0, a;, y) = (1 - z/)2A(2), (5.8) 

which has an application in some complicated algebra elsewhere [7]. 
The theory outlined above extends (though not easily) to P(29 1, m9 xs y) 

[and Q(29 1, ms x9 z/)],and more generally toP(2, m9 mr + ks xs y) . A differ-
ence equation resulting from this algebraic maelstrom, and which is useful in 
deriving fresh information, is 

P(2, 777, m + k9 x5 y) - QlmP(2$ m9 ks xs y) + P(2, m9 -m + k9 x9 y) (5.9) 

2(~l)kP2 

= 1 + 7 / * 
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6. GENERATING FUNCTIONS FOR CUBES OF PELL POLYNOMIALS 

With care, we may demonstrate the validity of 

Use this for summing to derive, first [cf. (1.9) and (1.12)], 

(1 - Q3y - y2) t Pjy* = y - 6*j/2A', (6.2) 
v = 0 

whence 

P(3, 1, 0, x, y) = (y - kxy1 - */3)A(3) (6.3) 

in which 

A(3)(l - Q3y - y1) = A'. (6.4) 

Similarly, 

3(3, 1, 0, x> y) = {8- (56#3 + 32x)y - (64^ + 48a;2 + 8)y2 

+ 8x3z/3}A(3). (6.5) 

Indulging in an orgy of algebra, we may construct (see [7]) a generaliza-
tion of (6.1) relating to P^+fe as leading term. Ultimately, we establish a 
formula for P(3, m9 ks x9 y) 9 the generating function for P^ + ^s although it 
it not a pretty sight. 

For possible interest we append the expression for A/3^, namely, cf. (1.13) 
also, 

A0) 
"i - iQ3m + (~DmQjy + (-Dm{QmQ3m + 2}y2 

•(-if{Q3m + (-ifQm}y3 +yh (6 .6 ) 

Obviously, the foregoing theory could be developed almost ad infinitum ad 
nauseam for P(j, m9 ks xs y)« Patience, skill, and motivation would be required 
for this task. 

7. GENERATING FUNCTIONS FOR DIAGONAL FUNCTIONS 

Rising diagonal functions Rn for {Pn} and vn for {Qn} were defined in [6]. 
Descending diagonal functions Dn and dn for these polynomials also exist (see 
[7]). Work on these types of functions, but for other polynomials, may be found 
in [3], [4], and [5]. 

Write 

D = D(x, y) = E V \ (7.1) 
n = i 

d = d(xs y) = £ dnyn-x
9 (7.2) 

n-2 

R = R(x, y) = Ei?/" 1, (7.3! 
n-l 
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r = r(x, y) = 1 + £ ^z/"- 1. (7.4) 
n=2 

Then9 following [3]-[5], we find 

D= l 

d = 

R = 

p = 
1 - 2xy - y3 

Furthermore, 

1 

1 

1 

- (2x + 

2^ + 2 
- (2x + 

1 
- 2xy -

i + y3 

Dys 

1)2/ ? 

y3' 

and 

^ i ^ n - l ^ 1 + (2x + 1)2Z/ ' 

P a r t i a l d i f f e r e n t i a t i o n y i e l d s 

(7 .5 ) 

(7 .6 ) 

(7 .7 ) 

( 7 .8 ) 

n = i 2»2/ i + (2 a ; + 1 ) 2 ^ ^ - y J 

£ ^ ^n_1 = 1 ^ ,„i^ „2..- (7.io) 

2y f - (2x + 1 ) ( | § - 2Z>) - 0, (7 .12) 

2 , - | - (2x + 3 ^ ) f - 0S (7 .13) 

2i/ | J - (2a: + 3 2 / 2 ) | | - 6 ( r - i?) = 0. (7 .14) 

8. CONCLUDING REMARKS 

Information provided above is merely "the tip of the iceberg." Much more 
lies to be discovered by effort and enterprise. 

Clearly, there exists a corresponding investigation involving exponential 
generating functions. 
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