ON PRIMITIVE PYTHAGOREAN TRIANGLES WITH EQUAL PERIMETERS

Leon Bernstein*
58, Sokolov Street, \#5, Tel-Aviv, Israel
(Submitted November 1983)
Dedicated to my wife Pesia and my son John

1. Introduction

A triple (x, y, z) of natural numbers is called a Pythagorean Triangle if x, y, z satisfy the Pythagorean equation

$$
x^{2}+y^{2}=z^{2}
$$

The triple (x, y, z) is a Primitive Pythagorean Triangle (PPT) if x, y, z have no common factor greater than 1 . If x is assumed to be odd, the set of PPT's can be generated by the set of pairs of natural numbers (u, v) satisfying

$$
\begin{equation*}
u>v>0,(u, v)=1, u+v \equiv 1(\bmod 2), \tag{1}
\end{equation*}
$$

the well-known generating formula being

$$
(x, y, z)=\left(u^{2}-v^{2}, 2 u v, u^{2}+v^{2}\right)
$$

The pair (u, v) is called the generator of the $\operatorname{PPT}(x, y, z)$.
In terms of the generator, the perimeter S of $(x, y, z), S=x+y+z$, may be expressed as

$$
S=2 u(u+v)
$$

Denote by H the set of all such perimeters. Let H_{k} be the subset of H defined by the relation: $S \in H_{k}$ if S is the perimeter of exactly k PPT's.

It is not difficult to show that H_{l} is an infinite set, i.e., there is an infinite set of PPT's each one of which has a perimeter not shared by any other PPT. The surprising fact that H_{2} is also an infinite set is proved in [1]. It is the main purpose of this paper to prove that H_{k} is an infinite set for any $k, k \geq 3$; see Proposition 3.3 below. The proof may appear to be const uctive, but it is ultimately seen to depend on a known existential Theorem of inalytic number theory, the so-called modern version of Bertrand's postulate.

Necessary conditions for the construction of k PPT's with equal perimeters are given in the next section. That the conditions can be met is shor n in the proof of Proposition 3.3.

2. A Constructive Device

Let us first construct k different generators (u, v) of PPT's with equal perimeters.

[^0]Proposition 2.1: Let $B_{1}, B_{2}, \ldots, B_{k}$ be $k(k \geq 3)$ odd positive integers, pairwise relatively prime, $B_{1}<B_{2}<\cdots<B_{k}$, and

$$
\begin{equation*}
B_{k}<B_{1} \sqrt{2} . \tag{2}
\end{equation*}
$$

Let

$$
A_{k}=\prod_{i=1}^{k} B_{i} \text { and } u_{t}=A_{k} / B_{t} \text { for } t \in T, T=\{1,2, \ldots, k\}
$$

Assume there exists an odd positive integer P_{k} satisfying the two conditions

$$
\begin{align*}
& \left(P_{k}, u_{t}\right)=1, t \in T \tag{3}\\
& \frac{B_{2} B_{3} \ldots B_{k}}{B_{1}}<P_{k}<2 \frac{B_{1} B_{2} \ldots B_{k-1}}{B_{k}} \tag{4}
\end{align*}
$$

If $v_{t}=P_{k} B_{t}-u_{t}, t \in T$, then the pairs $\left(u_{t}, v_{t}\right)$ are generators of $k P P T$'s having equal perimeters $S, S=2 P_{k} A_{k}$.

Proof: We show first that $\left(u_{t}, v_{t}\right)$ is the generator of a PPT for each $t \in T$, i.e., that $\left(u_{t}, v_{t}\right)$ satisfies (1). From the definitions of u_{t}, v_{t}, it follows that

$$
\begin{equation*}
u_{1}>u_{2}>\cdots>u_{k} \text { and } v_{1}<v_{2}<\cdots<v_{k} \tag{5}
\end{equation*}
$$

Since by (4),

$$
v_{1}=P_{k} B_{1}-u_{1}=P_{k} B_{1}-B_{2} B_{3} \ldots B_{k}>0,
$$

it follows from (5) that $v_{t}>0$ for $t \in T$. Moreover, it follows from (5) that $u_{t}>v_{t}, t \in T$, provided $u_{k}>v_{k}$. And this is a consequence of (4):

$$
u_{k}-v_{k}=2 u_{k}-P_{k} B_{k}>\left(2 A_{k} / B_{k}\right)-2 B_{1} B_{2} \ldots B_{k-1}=0
$$

Thus, $u_{t}>v_{t}, t \in T$.
Next, $\left(u_{t}, v_{t}\right)=1$ if and only if $\left(u_{t}, u_{t}+v_{t}\right)=\left(A_{k} / B_{t}, P_{k} B_{t}\right)=1$, which is true since, by assumption, $\left(u_{t}, P_{k}\right)=1$ and the B_{i} 's are pairwise relatively prime.

Since $u_{t}+v_{t}$ is odd, u_{t} and v_{t} must have opposite parity, i.e., $u_{t}+v_{t} \equiv$ $1(\bmod 2)$. This concludes the proof that $\left(u_{t}, v_{t}\right)$ satisfies (1) for each $t \in T$.

Finally, since $S=2 u_{t}\left(u_{t}+v_{t}\right)=2 P_{k} A_{k}$ is independent of t, the k PPT's generated by $\left(u_{t}, v_{t}\right), t \in T$, have equal perimeters.

3. Infinity of H_{k}

The main argument of this section rests on the following existential result; see [2], page 371.

Theorem 3.1: For every positive number ε there exists a number ξ such that for each $x, x>\xi$, there is a prime number between x and $(1+\varepsilon) x$. (It will be used to prove the following proposition which has a certain interest in itself.)

Proposition 3.2: Let $k \geq 3$ and let $\delta>0$. Then there is a number ξ such that for every $y, y>\xi$, there are k consecutive primes $B_{1}, B_{2}, \ldots, B_{k}$ and a prime P_{k} satisfying the inequalities

$$
\begin{aligned}
& y<B_{1}<B_{2}<\cdots<B_{k}<\sqrt{1+\delta} y \\
& \frac{B_{2} B_{3} \cdots B_{k}}{B_{1}}<P_{k}<(1+\delta) \frac{B_{1} B_{2} \cdots B_{k-1}}{B_{k}}
\end{aligned}
$$

Proof: Let ε_{1} be a given number such that $0<\varepsilon_{1}<\sqrt{1+\delta}-1$. By Theorem 3.1, there is a number ξ_{1} such that for every $x>\xi_{1}$, there are at least k consecutive primes $B_{1}, B_{2}, \ldots, B_{k}$ in the open interval $\left(x,\left(1+\varepsilon_{1}\right) x\right)$. Let

$$
\varepsilon=\frac{1+\delta}{\left(1+\varepsilon_{1}\right)^{2}}-1
$$

and take ξ_{2} so large that for each $x, x>\xi_{2}$, there is at least one prime number in the interval $(x,(1+\varepsilon) x)$.

Let $\xi=\max \left(\xi_{1}, \xi_{2}\right)$. Then for every $y, y>\xi$, we have that the interval (y, ($\left.1+\varepsilon_{1}\right) y$) contains k consecutive primes,

$$
\begin{equation*}
y<B_{1}<B_{2}<\cdots<B_{k}<\left(1+\varepsilon_{1}\right) y, \tag{6}
\end{equation*}
$$

and the interval $(y,(1+\varepsilon) y)$ contains a prime number \bar{P}_{k},

$$
\begin{equation*}
y<\bar{P}_{k}<(1+\varepsilon) y \tag{7}
\end{equation*}
$$

We show next that the interval

$$
[X, Y]=\left[\frac{B_{2} B_{3} \ldots B_{k}}{B_{1}},(1+\delta) \frac{B_{1} B_{2} \ldots B_{k-1}}{B_{k}}\right]
$$

contains \bar{P}_{k}. On the one hand, we know from (7) that $[X,(1+\varepsilon) X]$ contains at least the prime P_{k}, since for $k \geq 3, X=B_{2} B_{3} \ldots B_{k} / B_{1}>B_{2}$ and $B_{2}>y$ by (6). On the other hand, $[X,(1+\varepsilon) X]$ is a subinterval of $[X, Y]$ if we show $(1+\varepsilon) X$ < Y. This last inequality is equivalent to

$$
(1+\delta) \frac{B_{1} B_{2} \ldots B_{k-1}}{B_{k}}>\frac{1+\delta}{\left(1+\varepsilon_{1}\right)^{2}} \cdot \frac{B_{2} B_{3} \ldots B_{k}}{B_{1}},
$$

which, in turn, is equivalent to

$$
\left(1+\varepsilon_{1}\right)^{2} B_{1}^{2}>B_{k}^{2}
$$

But $\left(1+\varepsilon_{1}\right) B_{1}>\left(1+\varepsilon_{1}\right) y>B_{k}$ by (6). Thus $Y>(1+\varepsilon) X$. This concludes the proof.

We are now ready to prove the main proposition.
Proposition 3.3: Let $H_{k}, k \geq 3$, be the set of integers S such that S is the perimeter of exactly k PPT's. Then H_{k} is infinite.

Proof: Taking $\delta=1$ in Proposition 3.2, we can count on k consecutive primes $B_{1}, B_{2}, \ldots, B_{k}$ such that

$$
B_{k}<\sqrt{2} B_{1}
$$

so condition (2) is satisfied; moreover there is a prime P_{k} such that condition (4) is satisfied.

Defining A_{k}, u_{t}, and v_{t} as in Proposition 2.1, we see that (3) is also satisfied, so we may conclude that $\left(u_{t}, v_{t}\right), t \in T$, generate \mathcal{K} PPT's having equal perimeter $S=2 P_{k} A_{k}$.

Since y in (6) may be taken to be any number larger than ξ, it is clear that the above process may be repeated infinitely often. Each time we obtain a new set of k PPT's having equal perimeters.

It remains to show that no PPT, other than the ones constructed, can have perimeter $S=2 P_{k} A_{k}$. To do so, assume (u, v) generates a PPT with perimeter S $=2 P_{k} A_{k}$. We will show that (u, v) is not a generator of a PPT unless (u, v) is one of the pairs $\left(u_{t}, v_{t}\right)$ constructed above.

Since $S=2 u(u+v)=2 P_{k} A_{k}=2 B_{1} B_{2} \ldots B_{k} P_{k}$, there are but a finite number of possible values for u and $u+v$. We assume first that P_{k} is a factor of u and consider the three possibilities:
(i) $u=P_{k}, u+v=B_{1} B_{2} \ldots B_{k}$,
(ii) $u=B_{1} B_{2} \ldots B_{k} P_{k}, u+v=1$,
(iii) $u=q_{1} q_{2} \cdots q_{m} P_{k}, u+v=q_{m+1} q_{m+2} \ldots q_{k}$,
where $q_{1} q_{2} \ldots q_{m}, m \in\{1,2, \ldots, k-1\}$, denotes any one of the products of m different primes from the set $\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$, and $q_{m+1} q_{m+2} \ldots q_{k}$ the product of the remaining primes.

In case (i), condition (4) implies

$$
2 u=2 P_{k}<4 B_{1} B_{2} \cdots B_{k-1} / B_{k}<B_{1} B_{2} \ldots B_{k}=u+v,
$$

so that $u<v$, a contradiction of (1).
For case (ii), $v=1-u<0$, contradicting (1).
For case (iii), using (4), we write

$$
\begin{aligned}
\left(q_{1} q_{2} \ldots q_{m}\right)\left(q_{m+1} q_{m+2} \cdots q_{k}\right) P_{k} & =A_{k} P_{k}>A_{k}^{2} / B_{1}^{2} \\
& =B_{2}^{2} \ldots B_{k}^{2} \geq\left(q_{m+1} q_{m+2} \cdots q_{k}\right)^{2}
\end{aligned}
$$

Then

$$
u=q_{1} q_{2} \cdots q_{m} P_{k}>q_{m+1} q_{m+2} \cdots q_{k}=u+v
$$

contradicting (1).
Next, we shall assume that P_{k} is not a factor of $U_{\text {. }}$ Then P_{k} must be a factor of $(u+v)$, and we consider the four possibilities:
(I) $u+v=P_{k}, u=B_{1} B_{2} \ldots B_{k}$,
(II) $u+v=B_{1} B_{2} \ldots B_{k} P_{k}, u=1$,
(III) $u+v=q_{m+1} q_{m+2} \ldots q_{k} P_{k}, u=q_{1} q_{2} \ldots q_{m}$,
where $q_{1} q_{2} \ldots q_{m}, m \in\{1,2, \ldots, k-2\}$, denotes any one of the products of m different primes from the set $\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$, and $q_{m+1} q_{m+2} \ldots q_{k}$ the product of the remaining primes. Note that $u+v$ contains at least two of the primes B_{i} as factors.
(IV) $u+v=B_{t} P_{k}, u=B_{1} B_{2} \ldots B_{t-1} B_{t+1} \ldots B_{k}, t \in T$.

In case (I), using (4), we get

$$
u+v=P_{k}<2 A_{k} / B_{k}^{2}<B_{1} B_{2} \ldots B_{k}=u
$$

contradicting (1).

In case (II), $v=B_{1} B_{2} \ldots B_{k} P_{k}-1>1=u$, contradicting (1).
For case (III), using (4), we have

$$
\begin{aligned}
u+v & =q_{m+1} q_{m+2} \cdots q_{k} P_{k}>q_{m+1} q_{m+2} \cdots q_{k} A_{k} / B_{1}^{2} \\
& =\left(q_{m+1} q_{m+2} \cdots q_{k}\right)^{2}\left(q_{1} q_{2} \cdots q_{m}\right) / B_{1}^{2}>2 q_{1} q_{2} \cdots q_{m}=2 u,
\end{aligned}
$$

a contradiction of (1).
Case (IV) is seen to describe the k pairs $\left(u_{t}, v_{t}\right)$ defined above. These k pairs then generate k PPT's with equal perimeters $S=2 P_{k} A_{k}$, and no other PPT can have this perimeter.

4. Examples

Let us conclude with a few examples.
(1) When $k=3$, we have:

B_{1}	B_{2}	B_{3}	P_{3}	$\left(u_{1}, v_{1}\right)$	$\left(u_{2}, v_{2}\right)$	$\left(u_{3}, v_{3}\right)$	S
11	13	15	19	$(195,14)$	$(165,82)$	$(143,142)$	81,510
31	37	43	53	$(1591,52)$	$(1333,628)$	$(1147,1132)$	$5,228,026$
17	19	21	25	$(399,26)$	$(357,118)$	$(323,202)$	339,150
17	19	21	29	$(399,94)$	$(357,194)$	$(323,686)$	393,414
23	25	29	33	$(725,34)$	$(667,158)$	$(575,382)$	$1,110,550$
23	29	31	41	$(899,44)$	$(713,476)$	$(667,604)$	$1,695,514$
23	29	31	43	$(899,90)$	$(713,534)$	$(667,666)$	$1,778,222$
29	31	37	41	$(1147,42)$	$(1073,198)$	$(899,618)$	$2,727,566$

(2) Finally, let $k=4$ and

$$
B_{1}=17, B_{2}=19, B_{3}=21, B_{4}=23
$$

For the integer P_{4} within the bounds in (4), we can select any prime P_{4} in the set
$\{541,547,557,563,569,571,577,587\} ;$
moreover, Proposition 2.1 allows us to take any nonprime P_{4} in the set
$\{545,559,565,581,583\}$.

References

1. Leon Bernstein. "Primitive Pythagorean Triples." Fibonacci Quarterly 20.3 (1982):227-241.
2. G. H. Hardy \& E. M. Wright. An Introduction to the Theory of Numbers. 5th ed. Oxford: Oxford University Press, 1900.

[^0]: *This paper is the final version of two papers submitted for publication by Leon Bernstein before he died on March 12, 1984, of a cerebral hemorrhage. It benefitted from the advice of a number of anonymous referees.

