ON THE PERIODS OF THE FIBONACCI SEQUENCE MODULO M

Amos Ehrlich

School of Education, Tel-Aviv University, Israel (Submitted May 1986)

This article deals with Fibonacci's sequence

 $u_0 = 0, u_1 = 1, u_{n+2} = u_{n+1} + u_n$

and with the arithmetical function

K(m) = length of the period of Fibonacci's sequence when reduced modulo m.

In the last few years I had some occasions to guide activities in a mathematics-with-computer club for 15-year-olds, where we investigated the function K(m). Theorems 1 and 2 of the present article were found (without proofs) by members of these clubs. To be more specific, these are those of the students' results, which I was not able to find in the literature either before or after they have emerged in the club. The rest of the students' discoveries can be found either in [1] or in [4]. One of these is the following lemma which was suggested by the student Oded Farago.

Lemma: For any m and n, K([m, n]) = [K(m), K(n)].

Proof: Follows from [5], Lemma 13.

Theorem 2 in [1] says almost the same, but only for m and n that are relatively prime, so Oded's present version is more symmetric. (The lemma holds for every sequence that becomes periodical when reduced modulo a natural number.)

Theorem 1: For any fixed m let $\lambda_m(n) = K(m^{n+1})/K(m^n)$. Then:

I. $\lambda_m(n) \mid m$ for all n;

II. $\lambda_m(n) \mid \lambda_m(n+1)$ for all n;

III. there exists t such that $\lambda_m(n) = m$ for all $n \ge t$.

This theorem emerged from the work of four girls: Shoshi Pashkes, Sigalit Teshuva, Mali Gana, and Chenit Lotan.

Proof:

(i) If p is prime and t is the largest integer such that $K(p^t) = K(p)$, then Theorem 5 in [1] implies

$$\lambda_p(n) = \begin{cases} 1 \text{ if } 1 \leq n \leq t - 1 \\ p \text{ if } n \geq t \end{cases},$$

from which I, II, and III immediately follow.

11

(ii) If $m = p^e$, then the conclusion follows from (i), since

$$\lambda_m(n) = \lambda_p(ne)\lambda_p(ne+1) \dots \lambda_p(ne+e-1).$$

(iii) Now let (a, b) = 1 and assume that the theorem holds for m = a and m = b. By hypothesis and the lemma,

$$\lambda_a(n) | a, \lambda_b(n) | b, K(a^n b^n) = [K(a^n), K(b^n)],$$

also

 $\mathcal{K}(a^{n+1}b^{n+1}) = [\lambda_a(n)\mathcal{K}(a^n), \lambda_b(n)\mathcal{K}(b^n)].$

Let $\lambda_{ab}(n) = K(a^{n+1}b^{n+1})/K(a^nb^n)$. Then $\lambda_{ab}(n) | \lambda_a(n)\lambda_b(n)$. Thus, $\lambda_{ab}(n) | ab$.

Let p be a prime such that $p^{z_n} \|\lambda_{ab}(n)$. Then p | ab; without loss of generality, let p | a.

Let $p^{x_n} \| \lambda_a(n)$, $p^{y_n} \| K(a^n)$, $p^c \| K(b)$.

Since $p \nmid b$, by part I we have $p \nmid \lambda_b(n)$, so $p^c \parallel K(b^n)$ for all n. Therefore,

 $z_n = Max\{x_n + y_n, c\} - Max\{y_n, c\},\$

that is, $z_n = x_n$, $x_n + y_n - c$, or 0. By hypothesis, $x_n \le x_{n+1}$ and $y_n \le y_{n+1}$. Therefore, $z_n \le z_{n+1}$, so $p^{z_n} | \lambda_{ab}(n+1)$. Since p is arbitrary, we have

 $\lambda_{ab}(n) \mid \lambda_{ab}(n+1)$.

By hypothesis, there exists t_a such that $\lambda_a(n) = a$ for all $n \ge t_a$. Since $\lambda_a(n) = a$ means that $K(a^{n+1}) = aK(a^n)$ this implies that $y_{n+1} \ge y_n + 1$. It follows that there exists a $T > t_a$ such that for all $n \ge T$ we have $y_n > c$ and thus $z_n = x_n$.

Since, for such an n, $\lambda_{\alpha}(n) = \alpha$, it follows from $z_n = x_n$ that $p^{z_n} || \alpha$.

Since p/b, it follows that, for all $n \ge T$, $p^{z_n} || ab$.

For *n* sufficiently large, this holds for every prime *p* that divides *ab*; for such an *n*, $\lambda_{ab}(n) = ab$.

Theorem 2: For any even i > 3, $K(u_i) = 2i$. For any odd i > 4, $K(u_i) = 4i$.

Remark 1: Amihai and Moshe, the boys who found this, used different words. They said that the elements of the sequence $K(u_4)$, $K(u_5)$, $K(u_6)$, ... are, alternatively, the elements of two arithmetical sequences, one with the difference 4 and one with the difference 8.

Remark 2: The second part of Theorem 2 follows from Theorem 3 in [3].

Proof: K(m) is the first *i* after 0 such that $u_i \equiv 0$ and $u_{i+1} \equiv 1 \pmod{m}$.

Theorem 3 in [1] says: For every *m* there is a *d* such that $u_j \equiv 0 \pmod{m}$ if and only if d|j.

If $m = u_i > 1$ then d = i, since the elements before u_i are not changed when reduced modulo u_i . [This proves that $K(u_i)$ is a multiple of i.]

For the same reason, if i > 3 then $u_{i-1} \not\equiv 1 \pmod{u_i}$.

Now $u_{i+1} \equiv u_{i-1} \pmod{u_i}$; therefore, if i > 3, then the i^{th} element of the Fibonacci sequence modulo u_i does not start a new period, instead, it starts a sequence of u_{i-1} multiples (mod u_i) of the original sequence. Hence,

$$u_{2i+1} \equiv u_{2i-1} \equiv u_{i-1}^2 \pmod{u_i}$$
.

For every i, $u_{i-1}^2 = u_{i-2}u_i + (-1)^i$; therefore, if i is even, then $u_{2i+1} \equiv 1 \pmod{u_i}$ and $K(u_i) = 2i$.

[Feb.

12

For odd i, $u_{2i+1} \equiv -1$; therefore, $u_{4i+1} \equiv 1$, so $u_{3i+1} \not\equiv 1$ and $K(u_i) = 4i$.

References

- 1. D. D. Wall. "Fibonacci Series Modulo m." American Math. Monthly 67 (1960):525-532.
- 2. S. E. Mamangakis. "Remarks on Fibonacci Series Modulo m." American Math. Monthly 68 (1961):648-649.
- John Vinson. "The Relation of the Period Modulo to the Rank of Apparition of m in the Fibonacci Sequence." Fibonacci Quarterly 1.2 (1963):37-46.
 T. E. Stanley. "Powers of the Period Function for the Sequence of Fibonacci Numbers." Fibonacci Quarterly 18.1 (1980):44-45.
 John H. Halton. "On the Divisibility Properties of Fibonacci Numbers."
- Fibonacci Quarterly 2 (1964):217-240.
