ON THE PERIODS OF THE FIBONACCI SEQUENCE MODULO M

Amos Ehrlich
School of Education, Tel-Aviv University, Israel
(Submitted May 1986)

This article deals with Fibonacci's sequence

$$
u_{0}=0, u_{1}=1, u_{n+2}=u_{n+1}+u_{n}
$$

and with the arithmetical function

$$
\begin{aligned}
K(m)= & \text { length of the period of Fibonacci's sequence } \\
& \text { when reduced modulo } m \text {. }
\end{aligned}
$$

In the last few years I had some occasions to guide activities in a mathe-matics-with-computer club for 15-year-olds, where we investigated the function $K(m)$. Theorems 1 and 2 of the present article were found (without proofs) by members of these clubs. To be more specific, these are those of the students' results, which I was not able to find in the literature either before or after they have emerged in the club. The rest of the students' discoveries can be found either in [1] or in [4]. One of these is the following lemma which was suggested by the student Oded Farago.

Lemma: For any m and $n, K([m, n])=[K(m), K(n)]$.
Proof: Follows from [5], Lemma 13.

Theorem 2 in [1] says almost the same, but only for m and n that are relatively prime, so Oded's present version is more symmetric. (The lemma holds for every sequence that becomes periodical when reduced modulo a natural number.)

Theorem 1: For any fixed m let $\lambda_{m}(n)=K\left(m^{n+1}\right) / K\left(m^{n}\right)$. Then:
I. $\quad \lambda_{m}(n) \mid m$ for all n;
II. $\lambda_{m}(n) \mid \lambda_{m}(n+1)$ for all n;
III. there exists t such that $\lambda_{m}(n)=m$ for all $n \geq t$.

This theorem emerged from the work of four girls: Shoshi Pashkes, Sigalit Teshuva, Mali Gana, and Chenit Lotan.

Proof:

(i) If p is prime and t is the largest integer such that $K\left(p^{t}\right)=K(p)$, then Theorem 5 in [1] implies

$$
\lambda_{p}(n)=\left\{\begin{array}{l}
1 \text { if } 1 \leq n \leq t-1 \\
p \text { if } n \geq t
\end{array}\right.
$$

from which I, II, and III immediately follow.
(ii) If $m=p^{e}$, then the conclusion follows from (i), since

$$
\lambda_{m}(n)=\lambda_{p}(n e) \lambda_{p}(n e+1) \ldots \lambda_{p}(n e+e-1)
$$

(iii) Now let $(a, b)=1$ and assume that the theorem holds for $m=a$ and $m=b$. By hypothesis and the lemma,

$$
\lambda_{a}(n)\left|a, \quad \lambda_{b}(n)\right| b, K\left(a^{n} b^{n}\right)=\left[K\left(a^{n}\right), K\left(b^{n}\right)\right],
$$

also

$$
K\left(a^{n+1} b^{n+1}\right)=\left[\lambda_{a}(n) K\left(a^{n}\right), \lambda_{b}(n) K\left(b^{n}\right)\right]
$$

Let $\lambda_{a b}(n)=K\left(a^{n+1} b^{n+1}\right) / K\left(a^{n} b^{n}\right)$. Then $\lambda_{a b}(n) \mid \lambda_{a}(n) \lambda_{b}(n)$. Thus, $\lambda_{a b}(n) \mid a b$.
Let p be a prime such that $p^{z_{n}} \| \lambda_{a b}(n)$. Then $p \mid a b ;$ without loss of generality, let $p \mid \alpha$.

Let $p^{x_{n}}\left\|\lambda_{a}(n), p^{y_{n}}\right\| K\left(a^{n}\right), p^{c} \| K(b)$.
Since $p \nmid b$, by part I we have $p \nmid \lambda_{b}(n)$, so $p^{c} \| K\left(b^{n}\right)$ for all n. Therefore,

$$
z_{n}=\operatorname{Max}\left\{x_{n}+y_{n}, c\right\}-\operatorname{Max}\left\{y_{n}, c\right\},
$$

that is, $z_{n}=x_{n}, x_{n}+y_{n}-c$ or 0 . By hypothesis, $x_{n} \leq x_{n+1}$ and $y_{n} \leq y_{n+1}$. Therefore, $z_{n} \leq z_{n+1}$, so $p^{z_{n}} \mid \lambda_{a b}(n+1)$. Since p is arbitrary, we have

$$
\lambda_{a b}(n) \mid \lambda_{a b}(n+1)
$$

By hypothesis, there exists t_{a} such that $\lambda_{a}(n)=a$ for all $n \geq t_{a}$. Since $\lambda_{a}(n)=a$ means that $K\left(a^{n+1}\right)=\alpha K\left(a^{n}\right)$ this implies that $y_{n+1} \geq y_{n}+1$. It follows that there exists a $T>t_{a}$ such that for all $n \geq T$ we have $y_{n}>c$ and thus $z_{n}=x_{n}$.

Since, for such an $n, \lambda_{a}(n)=\alpha$, it follows from $z_{n}=x_{n}$ that $p^{z_{n}} \| a$.
Since $p \nmid b$, it follows that, for all $n \geq T, p^{z_{n}} \| a b$.
For n sufficiently large, this holds for every prime p that divides $a b$; for such an $n, \lambda_{a b}(n)=a b$.

Theorem 2: For any even $i>3, K\left(u_{i}\right)=2 i$. For any odd $i>4, K\left(u_{i}\right)=4 i$.
Remark 1: Amihai and Moshe, the boys who found this, used different words. They said that the elements of the sequence $K\left(u_{4}\right), K\left(u_{5}\right), K\left(u_{6}\right)$, ... are, alternatively, the elements of two arithmetical sequences, one with the difference 4 and one with the difference 8.

Remark 2: The second part of Theorem 2 follows from Theorem 3 in [3].
Proof: $K(m)$ is the first i after 0 such that $u_{i} \equiv 0$ and $u_{i+1} \equiv 1$ (mod m).
Theorem 3 in [1] says: For every m there is a d such that $u_{j} \equiv 0$ (mod m) if and only if $d \mid j$.

If $m=u_{i}>1$ then $d=i$, since the elements before u_{i} are not changed when reduced modulo u_{i}. [This proves that $K\left(u_{i}\right)$ is a multiple of i.]

For the same reason, if $i>3$ then $u_{i-1} \not \equiv 1\left(\bmod u_{i}\right)$.
Now $u_{i+1} \equiv u_{i-1}\left(\bmod u_{i}\right)$; therefore, if $i>3$, then the $i^{\text {th }}$ element of the Fibonacci sequence modulo u_{i} does not start a new period, instead, it starts a sequence of $u_{i-1} \operatorname{multiples}\left(\bmod u_{i}\right)$ of the original sequence. Hence,

$$
u_{2 i+1} \equiv u_{2 i-1} \equiv u_{i-1}^{2}\left(\bmod u_{i}\right)
$$

For every $i, u_{i-1}^{2}=u_{i-2} u_{i}+(-1)^{i}$; therefore, if i is even, then $u_{2 i+1} \equiv 1$ $\left(\bmod u_{i}\right)$ and $K\left(u_{i}\right)=2 i$.

```
For odd \(i, u_{2 i+1} \equiv-1\); therefore, \(u_{4 i+1} \equiv 1\), so \(u_{3 i+1} \not \equiv 1\) and \(K\left(u_{i}\right)=4 i\).
```


References

1. D. D. Wall. "Fibonacci Series Modulo m." American Math. Monthly 67 (1960):525-532.
2. S. E. Mamangakis. "Remarks on Fibonacci Series Modulo m." American Math. Monthly 68 (1961):648-649.
3. John Vinson. "The Relation of the Period Modulo to the Rank of Apparition of m in the Fibonacci Sequence." Fibonacci Quarterly 1.2 (1963):37-46.
4. T. E. Stanley. "Powers of the Period Function for the Sequence of Fibonacci Numbers." Fibonacci Quarterly 18.1 (1980):44-45.
5. John H. Halton. "On the Divisibility Properties of Fibonacci Numbers." Fibonacci Quarterly 2(1964):217-240.
