ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by
A. P. Hillman

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solution or problem should be on a separate sheet (or sheets). Preference will be given to those typed with double spacing in the format used below. Solutions should be received within four months of the publication date.

DEFINITIONS

The Fibonacci numbers F_{n} and the Lucas numbers L_{n} satisfy
and

$$
F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1
$$

$$
L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1
$$

PROBLEMS PROPOSED IN THIS ISSUE
B-634 Proposed by P. L. Mana, Albuquerque, NM
For how many integers n with $1 \leq n \leq 10^{6}$ is $2^{n} \equiv n(\bmod 5)$?
B-635 Proposed by Mohammad K. Azarian, U. of Evansville, Evansville, IN
For all positive integers n, prove that

$$
2^{n+1}\left[1+\sum_{k=1}^{n}(k!k)\right]<(n+2)^{n+1} .
$$

B-636 Proposed by Mohammad K. Azarian, U. of Evansville, Evansville, IN
Solve the difference equation

$$
x_{n+1}=(n+1) x_{n}+\lambda(n+1)^{3}[n!(n!-1)]
$$

for x_{n} in terms of λ, x_{0}, and n.
B-637 Proposed by John Turner, U. of Waikato, Hamilton, New Zealand
Show that

$$
\sum_{n=1}^{\infty} \frac{1}{F_{n}+a F_{n+1}}=1,
$$

where a is the golden mean $(1+\sqrt{5}) / 2$.

B-638 Proposed by Herta T. Freitag, Roanoke, VA
Find s and t as function of k and n such that

$$
\sum_{i=1}^{k} F_{n-4 k+4 i-2}=F_{s} F_{t}
$$

B-639 Proposed by Herta T. Freitag, Roanoke, VA
Find s and t as function of k and n such that

$$
\sum_{i=1}^{k} L_{n-4 k+4 i-2}=F_{s} L_{t}
$$

SOLUTIONS

No Fibonacci Pythagorean Triples

B-610 Proposed by L. Kuipers, Serre, Switzerland
Prove that there are no positive integers r, s, and t such that (F_{r}, F_{s}, F_{t}) is a Pythagorean triple (that is, such that $F_{r}^{2}+F_{s}^{2}=F_{t}^{2}$).

Solution by Marjorie Bicknell-Johnson, Santa Clara, CA
V. E. Hoggatt, Jr., proved that no three distinct Fibonacci numbers can be the lengths of the three sides of a triangle. (See page 85 of Fibonacci and Lucas Numbers, Houghton Mifflin Mathematics Enrichment Series, Houghton Mifflin, Boston, 1969.) Since a Pythagorean triple gives integral lengths for the sides of a right triangle, his result is more general. Hoggatt's elegant proof follows, where α, b, and c are the sides of the triangle:

In any triangle, we must have $a+b>c, b+c>a$, and $c+a>b$.
For any three consecutive Fibonacci numbers, $F_{n}+F_{n+1}=F_{n+2}$, and so there can be no triangle with sides having measures F_{n}, F_{n+1}, F_{n+2}. In general, consider Fibonacci numbers, F_{r}, F_{s}, F_{t}, where $F_{r} \leq F_{s-1}$ and $F_{s+1} \leq F_{t}$. Since $F_{s-1}+F_{s}=F_{s+1}$ and $F_{r} \leq F_{s-1}$, we have $F_{r}+F_{s} \leq F_{s+1}$, and since $F_{s+1} \leq F_{t}$, we have $F_{r}+F_{s} \leq F_{t}$. Therefore, there can be no triangle with sides having measure F_{r}, F_{s}, and F_{t}.

Also solved by Charles Ashbacher, Paul S. Bruckman, Piero Filipponi, C. Georghiou, Sahib Singh, Lawrence Somer, and the proposer.

Each Term a Multiple of 3

B-611 Proposed by Herta T. Freitag, Roanoke, VA
Let

$$
S(n)=\sum_{k=1}^{n} L_{4 k+2} .
$$

For which positive integers n is $S(n)$ an integral multiple of 3 ?
Solution by Bob Prielipp, U. of Wisconsin-Oshkosh
We shall show that $S(n)$ is an integral multkple of 3 for each positive integer n.

The claimed result is an immediate consequence of the following lemma.
Lemma: 3 divides $L_{4 k+2}$ for each nonnegative integer k.
Proof: Because $L_{2}=3$, the specified result holds when $k=0$. Let j be a nonnegative integer. Then

$$
\begin{aligned}
L_{4(j+1)+2} & =L_{4 j+6}=L_{4 j+4}+L_{4 j+5} \\
& =\left(L_{4 j+2}+L_{4 j+3}\right)+\left(L_{4 j+2}+2 L_{4 j+3}\right)=2 L_{4 j+2}+3 L_{4 j+3} .
\end{aligned}
$$

Hence, if 3 divides $L_{4 j+2}$, then 3 divides $L_{4(j+1)+2}$. The required result now follows by mathematical induction.

Also solved by Paul S. Bruckman, Piero Filipponi, C. Georghiou, L. Kuipers, Chris Long, Br. J. M. Mahon, H.-J. Seiffert, Sahib Singh, Lawrence Somer, H. J. M. Wijers, Gregory Wulczyn, and the proposer.

When the Sum Is a Multiple of 7

B-612 Proposed by Herta T. Freitag, Roanoke, VA
Let

$$
T(n)=\sum_{k=1}^{n} F_{4 k+2} .
$$

For which positive integers n is $T(n)$ an integral multiple of 7?
Solution by Lawrence Somer, Washington, D.C.
By inspection, we observe that the period of $\left\{F_{n}\right\}$ modulo 7 is 16 . Now,

$$
\begin{aligned}
& F_{2}=1 \equiv 1(\bmod 7), F_{6}=8 \equiv 1(\bmod 7), \\
& F_{10}=55 \equiv-1(\bmod 7), F_{14}=377 \equiv-1(\bmod 7) .
\end{aligned}
$$

It thus follows that

$$
F_{4 k+2} \equiv 1(\bmod 7) \text { if } k \equiv 0 \text { or } 1(\bmod 4)
$$

and

$$
F_{4 k+2} \equiv-1(\bmod 7) \text { if } k \equiv 2 \text { or } 3(\bmod 4) .
$$

Consequently, it follows that $T(n)$ is an integral multiple of 7 for a positive integer n if and only if n is an even integer.

Also solved by Paul S. Bruckman, Piero Filipponi, C. Georghiou, Br. J. M. Mahon, Bob Prielipp, H.-J. Seiffert, Sahib Singh, H. J. M. Wijers, Gregory Wulczyn, and the proposer.

Finding the Constants

B-613 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy
Show that there exist integers a, b, and c such that

$$
F_{n+p}^{2}+F_{n-p}^{2}=\alpha F_{n}^{2} F_{p}^{2}+b(-1)^{p} F_{n}^{2}+c(-1)^{n} F_{p}^{2} .
$$

Solution by C. Georghiou, University of Patras, Greece
We will show that $a=5$ and $b=c=2$. Indeed, from the identity

$$
5 F_{n}^{2}=L_{2 n}-2(-1)^{n}
$$

we find
and

$$
5 F_{n+p}^{2}+5 F_{n-p}^{2}=L_{2 n+2 p}+L_{2 n-2 p}-4(-1)^{n+p}=L_{2 n} L_{2 p}-4(-1)^{n+p}
$$

$$
25 F_{n}^{2} F_{p}^{2}=L_{2 n} L_{2 p}-2(-1)^{p} L_{2 n}-2(-1)^{n} L_{2 p}+4(-1)^{n+p}
$$

It follows, therefore, that

$$
\begin{aligned}
F_{n+p}^{2}+F_{n-p}^{2}-5 F_{n}^{2} F_{p}^{2} & =\left(2(-1)^{p} L_{2 n}+2(-1)^{n} L_{2 p}-8(-1)^{n+p}\right) / 5 \\
& =2(-1)^{p} F_{n}^{2}+2(-1)^{n} F_{p}^{2} .
\end{aligned}
$$

Also solved by Paul S. Bruckman, Herta T. Freitag, L. Kuipers, Br. J. M. Mahon, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Lawrence Somer, Gregory Wulczyn, and the proposer.

Quadruple Products Mod 8

B-614 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy

$$
\text { Let } L(n)=L_{n-2} L_{n-1} L_{n+1} L_{n+2} \text { and } F(n)=F_{n-2} F_{n-1} F_{n+1} F_{n+2} \text {. Show that }
$$

$$
L(n) \equiv F(n) \quad(\bmod 8)
$$

and express $[L(n)-F(n)] / 8$ as a polynomial in F_{n}.
Solution by Sahib Singh, Clarion U. of Pennsylvania, Clarion, PA
Using I_{20} and I_{29} in Hoggatt's Fibonacci and Lucas Numbers, we get:

$$
L(n)=L_{n}^{4}-25 \quad \text { and } \quad F(n)=F_{n}^{4}-1
$$

Replacing L_{n}^{2} by $5 F_{n}^{2}+4(-1)^{n}$, we get

$$
L(n)-F(n)=24 F_{n}^{4}+40(-1)^{n} F_{n}^{2}-8 \equiv 0(\bmod 8)
$$

Hence,

$$
\frac{L(n)-F(n)}{8}=3 F_{n}^{4}+5(-1)^{n} F_{n}^{2}-1
$$

Also solved by Paul S. Bruckman, Herta T. Freitag, C. Georghiou, L. Kuipers, Bob Prielipp, H.-J. Seiffert, Gregory Wulczyn, David Zeitlin, and the proposer.

Identity for Iterated Lucas Numbers

B-615 Proposed by Michael Eisenstein, San Antonio, TX

$$
\text { Let } \begin{aligned}
C(n) & =L_{n} \text { and } a_{n}=C(C(n)) . \text { For } n=0,1, \ldots, \text { prove that } \\
a_{n+3} & =a_{n+2} a_{n+1} \pm a_{n} .
\end{aligned}
$$

Solution by C. Georghiou, University of Patras, Greece
It is easy to see that $a_{n}=\alpha^{L(n)}+\beta^{L(n)}$. Therefore,

$$
\begin{aligned}
a_{n+2} a_{n+1} & =\left(\alpha^{L(n+2)}+\beta^{L(n+2)}\right)\left(\alpha^{L(n+1)}+\beta^{L(n+1)}\right) \\
& =\alpha^{L(n+3)}+\beta^{L(n+3)}+(-1)^{L(n+1)}\left(\alpha^{L(n)}+\beta^{L(n)}\right)
\end{aligned}
$$

from which the assertion follows.

Also solved by Paul S. Bruckman, Piero Filipponi, Herta T. Freitag, L. Kuipers, Br. J. M. Mahon, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Lawrence Somer, David Zeitlin, and the proposer.

