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1. Introduction 

In Chapter 3 of his second notebook [1, p. 164], Ramanujan defined polyno-
mials 

v-2 
ArW = X > 0 % k)x2r-k~l (r > 2) (l.i) 

k = o 
with Al(x) = x. The numbers a(r9 k) are integers such that a (2, 0) = 1 and, 
for v > 2, 

a(r + 1, fe) = (r - l)a(r, k - 1) + (2r - k - l)a(r, k). (1.2) 

Also, a(p, fc) = 0 when k<Qoxk>T- 2. Properties of Ar (x) , and the moti-
vation for defining them, are discussed in [1, pp. 163-166]. Included in that 
reference is a list of the polynomials Ar (x) , 1 < v < 7, and the following theo-
rem: 

Lafr, k) = Ar(l) = (r - l)^ 1. (1.3) 
fe = o 

In [3] it was shown how a(r9 v - k) can be expressed in terms of Stirling 
numbers of the first kind, and the following special cases were worked out: 

a(r, 0) = 1 • 3 • 5 • • •• • (2P - 3), (1.4) 

a(r, 1) = [1 • 3 • 5 • ••• • (2r - 3) ] (r - 2)/3, (1.5) 

a(r9 v - 2) = (r - 2)! (1.6) 

We note here that it is easy to prove by induction that 

a(r9 2) = (r - 3)(r - 2)(r - 1)5 • 7 • ••• • (2r - 5)/3. 

The main purpose of the present paper is to prove congruences for a(r9 k) 
(mod p) , where p is a prime number. As an application of some of these congru-
ences we prove Ap(x)/xp+l and Ap_i(x)/xp are irreducible over the rational 
field. We also determine, for all v , the least residues of a(r, k) (mod 2), 
(mod 3), and (mod 4). For each r we find the largest k such that a{v 9 k) t 0 
(mod p ) , and we make a conjecture, based on computer evidence, about the 
smallest k such that a(r9 k) i 0 (mod p ) . We also conjecture the following 
periodicity property: 

a(r + (p - l)p, k + (p - 2)p) = a(r, fe) (mod p). 

This has been verified for all primes p < 251. A few other results and conjec-
tures are given for moduli not necessarily prime. 

2. Congruences (Mod P) 

Theorem 2.1: For any prime number p, 

a(p9 k) = 0 (mod p) (fe = 0, 1, ..., p - 3), 
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a(p, p - 2) = 1 (mod p). 

Proof: In [1, p. 164] we have 

Ar{x) = x(r - 2)Ar_l(x) + x ^ (V " ̂ ( ^ ^ ( x ) , (2.1) 

and hence 

A +l(x) E -x^p(x) + x̂ .p (a:)i41 (#) E (X2 - x)AP(x) (mod p) . 

Comparing coefficients of x2-P~k + l , we have 

a(p + 1, k) E a(p, fe) - a(p, fc - 1) (mod p) . (2.2) 

From (1.2) we have 

a(p + 1, fc) = -a(p, k - 1) - (k + l)a(p, fe) (mod p). (2.3) 

Combining (2.2) and (2.3), we see that 

(k + 2)a(p, fc) E 0 (mod p) (fe = 0, ..., p - 2). (2.4) 

The theorem now follows from (2.4) and (1.6). We note that results similar to 
Theorem 2.1 have been proved for the Stirling numbers [2, pp. 218-219]. 

Theorem 2.2: For any odd prime number p, 

a(p - 1, k) E 0 (mod p) (k = 0, 1, ..., p - 4), 

a(p - 1, p - 3) E (p - 3)! (mod p). 

Proof: From (1.2) we have 

a(p, fe) E -2a(p - 1, k - 1) - (k + 3)a(p - 1, fe) (mod p). 

Thus, by Theorem 2.1, 

(k + 3)a(p - 1, k) E -2a(p - 1, fe - 1) (mod p) (fe = 1, ..., p - 3). 

Since 
a(p - 1, 0) = 1 • 3 (2p - 5) E 0 (mod p) for p > 3, 

the theorem follows from (2.5) and (1.6). 

(2.5) 

Theorem 2.3: For any odd prime number p, the polynomials 

Ap(x)/xP+l and Ap_l(x)/x? 
are irreducible over the rational field. 

Proof: Assume p > 2. We know 

a(p9 k) E 0 (mod p) (fe = 0, 1, ..., p - 3), 

a(pf 0) = 1 • 3 • ••• • (2p - 3) t 0 (mod p 2 ) , 

a(p, p - 2) E 1 2 0 (mod p). 

Thus, j4p(;c)/xp + 1 is irreducible by Eisenstein's Criteria. The proof is similar 
for Ap_l(x)/xP. 

We note here that Theorem 2.1 could be generalized by using pJ, j > 1, in-
stead of p. Replacing p by pJ in the proof, we have 

a(pJ, k) E 0 (mod p) (fe £ -2 (mod p)). 
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Theorem 2.4: I f p i s an odd pr ime and i f m > p , t h e n 

a(m, k) E 0 (mod p) (fc = 0 , 1, . . . , p - 3 ) . 

Ifm>p, t h e n 

a(m, p - 2) = a ( p + t , p - 2) E 1 • 3 ( 2 t - 1) (mod p ) . 

Proof: We use induction on 777. The first part of the theorem is true for m 
Assume it is true for 7?? = p, p + 1, . . . , r. Then, by (1.2) we have, for k 
1» ..., p - 3, 

a{v + 1, fc) E 0 (mod p); 

therefore, the first part of the theorem is true for all 77? > p. Now, by (1 
if t > 0, then 

a(p + t, p - 2) E (2t - l)a(p + t - 1, p - 2) 

E 1 • 3 (2t - l)a(p, p - 2) 

E 1 • 3 (2t - 1) (mod p). 

This completes the proof. 

We note that when t > (p + l)/2, 

a(p + t , p - 2) E 0 (mod p) (p > 2). 

We also note the following special cases of Theorem 2.4. For k = 0, 1, 2, 
p - 3: 

a(p + 1, k) E 0 (mod p) ; a(p + 2, k) = 0 (mod p) : 

a(p + 1, p - 2) E 1 (mod p); a(p + 2, p - 2) E 3 (mod p); 

a(p + 1, p - 1) E -1 (mod p); a(p + 2, p - 1) E -2 (mod p); 

a(p + 2, p) E 0 (mod p). 

Theorem 2.5: Let p be an odd prime. Then, for k = 0 , 1, ..., 2 p - 5 : 

a(2p, k) E 0 (mod p); (2p - 1, k) = 0 (mod p); 

a(2p, 2p - 4) E 1 (mod p); a(2p - 1, 2p - 4) E 1 (mod p); 

a(2p, 2p - 3) E -2 (mod p); a(2p - 1, 2p - 3) E 0 (mod p); 

a(2p, 2p - 2) E 0 (mod p). 

Proof: We know by (1.6) and Theorem 2.4 that 

a(2p., 2p - 2) E 0 E a(2p, p - 2) (mod p) . 

From (2.1) we have 

A2p+l(x) E (-# + x2)A2p(x) + 2xAp(x)Ap+l(x) (mod p). 

Thus, by Theorem 2.1 and Theorem 2.4 (with 777 = p + 1) , 

A2p+l(x) E (-x + j;2)A2p(x) + 2x2P + s - 2x2? + l* (mod p) . ( 

Congruence (2.6) gives, for k * 2p - 3, 2p - 4, 

a(2p + 1, fe) E a(2p, /c) - a(2p, k - 1) (mod p) , ( 

and from (1.2) we have 

a(2p + 1, k) E -(& + l)a(2p, k) - a(2p, /< - 1) (mod p) . ( 

Combining (2.7) and (2.8), we have, for k * 2p - 3, 2p - 4, 
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(k + 2)a(2p, k) = 0 (mod p) . 

For fc = 2p - 3 and k = 2p - 4, (2.6) and (2.8) give 

(2p - l)a(2p, 2p - 3) E 2 (mod p ) , 

(2p - 2)a(2p, 2p - 4) = -2 (mod p ) , 

and we see that the congruences for a(2p, k) in Theorem 2.5 are valid. Now5 by 
(1.2) and (1.4), we have 

a(2p, k) = -2a(2p - 1, k - 1) - (k + 3)a(2p - 1, k) (mod p), 

a(2p - 1, 0) E 0 (mod p). (2.9) 

Thus, a(2p - 1, k) E 0 (mod p) (fe = 0, 1, ..., p - 4), 

and by Theorem 2.4, 

a(2p - 1, p - 3) E 0 (mod p). 

It is now clear that the congruences for a(2p - 1, k) follow from the congruen-
ces for a(2p, k) and (2.9). This completes the proof. 

Theorem 2.6: If p is prime and m > 2p, then 

a(m, k) E 0 (mod p) (fc = 0, 1, ..., 2p - 5), 

a(m9 2p - 4) = a(2p + t, 2p - 4) = 1 • 3 (2t + 1) (mod p). 

Proof: We use induction on m. The theorem is true for m = 2p. Assume it is 
true for m = 2p, 2p + 1, ..... p. Then, by (1.2), we have 

a(r + 1, fe) E 0 (mod p) (fc = 0, 1, ..., 2p - 5); 

therefore, the first part of the theorem is true for all m > 2p. By (1.2), we 
have, for t > 0, 

a(2p + t , 2p - 4) E (2t + l)a(2p 4- t - 1, 2p - 4) 

E 3 • 5 • ••• • (2t + l)a(2p, 2p - 4) 

E l - 3 ' 5 (2t + 1) (mod p). 

This completes the proof. 

Using the same sort of proof as the proof of the first part of Theorem 2.5, 
we can show, for p > 2, 

a(3p, k) E 0 (mod p) (k = 0, 1, ..., 3p - 7; k * 2p - 2). 

The case a(3p, 2p - 2) has not been resolved. We indicate with Conjecture 1 in 
Section 4 what the general situation appears to be. The next theorem deals 
with a related problem, namely, the problem of finding the largest k such that 
a(p, k) t 0 (mod p). 

Define g(p3 r) to be the largest k such that a(r, k) i 0 (mod p). 

Theorem 2.7: Let r be a positive integer, r > 2. Write 

p = 2 + (s(p - 1) + t)p + w 

with s > 0 , 0 < t < p - 2 , and 0 < w < p - 1. Then 

g(p, P ) = m = sp(p - 2) + t(p - 1) + u. 

Furthermore, 

a(r, m) E ul (p - 2)!/(p - 2 - t)! (mod p). 
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Proof: We give a brief outline of the proof by induction on s, t, and u. Note 
that showing air 9 k) = 0 (mod p) for all k > m is simple, and we omit the de-
tails. The recurrence relation (1.2) is the main tool in all of the following. 
The theorem is certainly true for s = t = u = 0. For fixed s and t 9 induction 
on u is straightforward. Note that the induction applies to arbitrarily large 
u; the statement of the theorem restricts u to the nonzero values of air9 m) . 
If the theorem is true for some fixed value of s, u = p - 1, and some value of 
t, then it is not hard to show that the theorem must be true for the same s9 u 
= 05 and the successor of t. By induction, if this theorem is true for some s 
and for t = u = 0, then it is also true for that s and all 0 < t < p - 2 and 
0 < u < p - 1. 

Now suppose the theorem is true for some s and all t and u such that 0 < 
t < p - 2 and 0 < u < p - 1. Let 

rQ = 2 + (s(p - 1) + ip - 2))p 
and let 

mQ = spip - 2) + (p - 2)(p - 1). 

Then5 putting t = p - 2 in the induction hypothesis> we have 

a(pQ + u, m0 + u) = w! (mod p) for 0 < u < p - 1. 

Since rQ - 2 E 0 (mod p) and 2P Q - (̂ Q + 1) ~ 3 E 0 (mod p) , we must have 

a(pQS TW0 - 1) E 0 E 0 - 0! (mod p) . 

Now induct on u to show that 

a(pQ 4- u$ mQ + u - 1) E u*w! (mod p). 

Finally, we can conclude that: 

a(pQ + p9 m0 •+• p) E p! E 0 (mod p ) ; 

a(r0 + p, 77z0 + p - 1) = p • p! = 0 (mod p); 

a(2 + (s + Dip - D p , (s + l)p(p - 2)) = airQ + ps mQ + p - 2) 

E 0 - a(pQ + p - 1, w0 + p - 3) + (4 - 0 - 3) * a(pQ + p - 1, wQ + p - 2) 

E ip - 1) - (p - 1)1 E 1 (mod p). 

It follows that the theorem is true for t = u = 0 and s + 1. By induction, the 
theorem is true for all s > 0 , 0 < t < p - 2 , and 0 < w < p - 1. 

The proof of the following theorem follows the same lines as the proof of 
Theorem 2.2. 

Theorem 2.8: Let p be prime, p > 3. Then, for 1 < t < ip - 3)/2, 

aip - t9 k) E 0 (mod p) (fc = 0, 1, ..., p - 2£ - 2). 

For 2 < £ < p - 1, 

a(2p - t, fc) E 0 (mod p) (fc = 0, 1, ..., 2p - 2* - 2). 

For example, using Theorem 2.8, Theorem 2.2, and (1.2), we have, for p > 59 

aip - 2, k) E 0 (mod p) (Zc = 0, 1, . . . , p - 6), 

a(p - 2, p - 5) E -ip - 4)!/3 (mod p ) , 

aip - 2, p - 4) E (p - 4)! (mod p). 

3. Congruences (Mod 2), (Mod 3), and (Mod 4) 

In this section we first determine when air, fe) is even and when it is odd. 
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Theorem 3.1: 
a(r, 0} E 1 (mod 2) (r > 2), 

a(r, 1) E r (mod 2) (r > 3), 

a(r, k) E 0 (mod 2) (k > 1). 

Proof: The congruences for a(r, 0) and a(r, 1) are clear from (1.4) and (1.5). 
By (1.2) we have, for k > 1, 

a(2r, k) E (k + l)a(2r - 1, k) (mod 2). 

If k is odd, we clearly have a(2r, k) is even. If k is even, then 

a(2p, k) E a(2p - 1, k) (mod 2). 

And by (1.2), since k - 1 is odd, 

a(2r - 1, k) E a(2r - 2, k) (mod 2). 

Thus, 

a(2r, k) E a(2r - 2, k) E ... E.a(fe + 2, fe) E fe! E 0 (mod 2). 

Now since 

a(2p + 1, k) E a(2r, fe -- 1) + (k + l)a(2r, k), 

we have a(2p + 1 , k) is even if k > 1. This completes the proof. 

The patterns (mod 4) and (mod 8) are suggested by the computer and can be 
proved by induction on v. For (mod 4) we have the following congruences. 

Theorem 3.2: a(r3 k) = 0 (mod 4) for all k except: 

( m = (1 (mod 4) if v E 1 or 2 (mod 4), 
K ' J " \3 (mod 4) if v E 0 or 3 (mod 4), 

, -, >> _ (1 (mod 4) if p E 1 or 3 (mod 4) , 
a ( J S j " (2 (mod 4) if v E 0 (mod 4), 

a(p, 2) E 2 (mod 4) if v E 0 (mod 4), 

a(r, 3) E 2 (mod 4) if r E 1 (mod 4). 

Theorems 3.1 and 3.2 suggest the following, which can be proved by means of 
(1.2) and induction on n. 

Theorem 3.3: If k > 2n, then a(p, k) = 0 (mod 271) . 

To prove congruences (mod 3) we need the following lemma, which is a spe-
cial case of Conjecture 4 of Section 4. 

Lemma: For r > 2, a(r, k) E a(r + 6, k + 3) (mod 3), 

Proof: The lemma is true for v = 2 , since 

a(8, 3) E 1 (mod 3), 

a(8, k) E 0 (mod 3) if k * 3. 

Assume it is true for r = m - 1. Then, by (1.2), 

a(w + 6, k + 3) E (??7 - 2)a((/?? - 1) + 6, k + 2) 
+ (2(̂7? - 1) - 1 - k)a(m - 1, k) 

(continued) 
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= (jn - 2)a(m - 1, k - 1) + (2(777 - 1) - 1 - k)a(m - 1, k) 

= a(m, k) (mod 3 ) . 

Theorem 3.4: a(r, k) E 0 (mod 3) f o r a l l £c e x c e p t : 

E 1 (mod 3 ) , v > 2, 

= r(r + 1) (mod 3) i f r i 0 (mod 6 ) , 
1 (mod 3) i f r = 0 (mod 6 ) . 

a\r, 

a\r, 

V 

V 

-
2 

+ 
2 

f 

f 

Proof: Suppose r E 2 (modi), i. e. , r = 6 j + 2. Then, by the lemma, 

a(p, fe) E a(6(j - 1) + 2, fe - 3) E ..- E a(2, fe - 3j) (mod 3) 

Thus, 
, _ (0 (mod 3) if k * 3j, 

U ' ; " (1 (mod 3) if k = 3j = (P - 2)/2. 

The other cases of v (mod 6) are handled in exactly the same way. 

4. Conjectures 

Theorem 2.4, Theorem 2.5, and information given by the computer suggest the 
following conjectures. 

Conjecture 1: For all integers t and positive integers h such that h + t > 1, 

a(hp + t, fe) E 0 (mod p), fe = 0, 1, ..., h(p - 2) - 1, 

a(hp + t, /i(p-2) E 1«3 (2tl 2h - 3) (mod p) . 

For t > 0, Conjecture 1 has already been proved in Section 2 of this paper 
for h = 1, h = 2. If we try induction and assume true for h = m - 1, we can 
show, as in Theorem 2.1 and Theorem 2.5, 

(fe + 2)a(mp, k) E 0 (mod p) (fe - 0, ..., m(p - 2) - 2). 

Thus, the proof depends on showing 

a(mp, k) E 0 (mod p) ±f k = -2 (mod p). 

The rest of the proof, for i > 0, would then follow. The cases t > 0 have been 
verified by the computer for all primes less than or equal to 251. The case 
h + t = 0 leads to the next conjecture. 

Conjecture 2: Let p be any prime. 

(i) Let h be any nonnegative integer. Then 

a(2 + hp(p - 1), m) E 0 (mod p) if m * hp(p - 2). 

(ii) Let ft be a nonnegative integer, h t 0 (mod p). Then 

a(l + h(p - 1), m) E 0 (mod p) if m * h(p - 2). 

(iii) Let h be a nonnegative integer, /i / 0 or.p - 1 (mod p) , 

a(h(p - 1), 777) E 0 (mod p) if 777 * /z(p - 2) - 1. 

By Theorem 2.7, we know: 

(i) a(2 + hp(p - 1), /zp(p - 2)) E 1 (mod p) . 

(ii) Let h = sp + t , 1 < £ < p - 1, s > 0 , then 

Then 
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- t), 
t) 

a(l + h(p - 1), h(p - 2)) 
= a(2 + (s(p - 1) + (t - l))p + (p - 1) 
sp(p - 2) + (t - l)(p - 1) + (p - 1) • 

E (p - 1 - £)! • (p - 2)!/(p - 2 - (* - 1))! = 1 (mod p). 

(iii) Let h = sp + t, 1 < t < p - 2, s < 0, then 
a(h(p - 1), h(p - 2) - 1) 

= a(2 + (s(p - 1)+ (* - D)p + (p - 2) - t), 
sp(p - 2) + (t - l)(p - 1) + (p - 2) - t) 

E (p - 2 - £)! • (p - 2)!/(p - 2 - (* - 1))! E (p - 2)!/(p - 1 t) 

The authors are grateful to the referee for suggesting the next conjecture. 
Part of this conjecture would follow from Conjectures 1 and 2. 

Define f(p, r) to be the smallest k such that a(r, k) ^ 0 (mod p). 

Conjecture 3: Clearly f(p, r) = 0 if r < (p + l)/2. Thus, for i> > 2: 

(i) /(p, r) = (p - 2) 

(ii) f(p, r) = (p - 2) 

(iii) /(p, r) > (p - 2) 

LP 
" 
V 

r 
-

V 
-

1_ 
" 

1_ 

- 1 if (p - l)|p; 

if r = t (mod p - 1) , 1 < t < (p + 1) /2; 

IP - 1 
+ 2t if P E t + (p + l)/2 (mod p - 1), 

1 < t < (p - 5)/2. 
In some cases, f(p9 ^) is larger than the formula given in (iii) above. 

For example, f(ll, 17) = 13, f(ll, 48) = 42, jf(13, 22) = 19, and /(13, 68) = 59 
are larger by 2, and f(41, 350) = 334, f(43, 1743) = 1703, /(61, 2152) = 2111, 
and f(67, 2038) = 2002 axe larger by 4. It appears to be difficult to predict 
when /(p, P ) will be larger than the formula or by how much it will be bigger. 
There are many cases where f(p9 T) is larger by 2 or 4, and we suspect the 
formula could be off by even more for very large primes. 

Conjecture 4: If p is any prime, then 

a(r + p(p - 1), m + p{p - 2)) = a(r, m) (mod p) for any r > 2, m > 0. 
Because of the recursion formula, (1.2), it suffices to show that 

a(2 + p{p - 1), m + p(p - 2)) E a(2, m) (mod p) 
for all integers m . In this manner, Conjecture 4 has been proved on the 
computer for any prime p < 251. 

Conjecture 5: If p is any prime and m > 0, then 
air + pnip - 1), m + p*(p - 2)) E a(r, /w) (mod pn) 

for all sufficiently large p. 

Conjecture 5 has been proved on the computer for pn up to 213, 37, 55, 7^, 
ll3, 133, 172, 192, 232, 292, 312, 372, 412. 

Conjecture 6: If p is an odd prime, then 

(i) air, 0) E p (mod 2p) for r > (p + 3)/2; 
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, . . x / 1N _ (0 (mod 2v) if r is even . , , _N /0 (n) a(r, 1) = < ) j o ( -r • JJ and i5 ̂  (p + 3)/2; \p (mod 2p) if p is odd ^ Jl s 

(iii) if m > 2 and r > (p + 3)/2, then 

a(r + p(p - 1), m + p(p - 2)) E a(p, m) (mod 2p). 

Conjecture 6 can be proved to be true if Conjecture 4 is assumed to be 
true. Similar conjectures for other composite moduli also seem to hold, but 
are more complicated to state. 

5. Concluding Remarks 

Apparently not much is known about the numbers a(r9 k). It would be useful 
if a generating function and a combinatorial interpretation were found. Also, 
it appears difficult to find values of Ar(x) for x * 0, x * 1. We remark that 
it is easy to find derivative formulas for Ar(x)s however. It follows from 
(1.2) and the definition of Ar(x) that 

x3A^(x) = Ar+l(x) - (r - l)xAr(x)9 
(J) and thus it is easy to find a general formula for Ar (x). For example, we have 

by (1.3) and the above comments, 

A;a) = r* - (r - iy 
A^(l) = (r + 1)[(P + 1)P - 2rr + (r - l)p]. 
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