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Introduction 

The three related classical series for representing real numbers as the 
sums of reciprocals of integers were all studied toward the end of the nine-
teenth century. These are, respectively, the series of Sylvester, Engel, and 
Luroth (see Perron [1]). More precisely, given any veal numbev A there exist 
thvee (different) sequences of integers {a^} such that 

, - S A 1 1 1 
(i) A = a, + — + — + — + . . . 1 al a2 a3 

where al > 2, ai+l > a^a^ - 1) + 1 for i > 1, 

(ii) A = an + — + + + •.., 

where a± > 2, a^ + l > a^ for i > 1, 
1 1 1 1 1 

(iii) A = an + — + 7 r r — • V -, TT 7 T\— • — + • • • 5 
u a-^ (a1 - l)^x &2 ^ai " l)ai(a2 " l)a2 a3 

where a^ ^ 2 for i > 1. 

Observe that as we move from the Sylvester series (i) to the Luroth series 
(iii), the denominators in the expansion become increasingly more complex while 
at the same time the growth conditions on the digits a^ become simpler. We now 
generalize the expansions in (i) and (ii) above, to obtain new representations 
for real numbers that depend on a power k > 0. These new representations have 
the desirable property of having terms only slightly more complex than in (i) 
and (ii) above, yet their digits need satisfy only mild growth conditions. Two 
different sets of algorithms leading to results of the types mentioned are con-
sidered. We state the main results in the case where the digits ai grow least. 

Given any fixed veal k > 1 and any veal numbev A3 theve exist sequences of 
integevs {a^} such that 

I 1 1 
(i) A = a0 + -r + -r + -T + •••» 

where ai+l > at > 2 for i > 1, and for i sufficiently large, 

a • + 1 < ai + l < 2llkat + 1, 

I I 1 
(ii) A = aQ + —7 + r- H — + • • •, 

a* (a^a^) (alaza^)K 

where a-, = 2 , 1 < a . < 2 for i > 2, and a- = 2 infinitely often, 
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1 1 1 
(iii) A = aQ + — + - r - + + . . ., 

al ^1^2 (^^2^ a3 

where a1 = 2, 1 < a^ < 2 for i > 2, and a^ = 2 infinitely often. 

Since only the digits 1 and 2 are used, the representations (ii) and (iii) 
above could be regarded as being analogous in some fashion to the binary repre-
sentation for real numbers. Expansions of the above form where the digits have 
no upper bounds are also considered. We note in particular that, by setting k 
= 1 in the above results, we obtain expansions for real numbers with the same 
form as the Sylvester and Engel series but whose digits are considerably 
smaller. In addition, when k is a positive integer, rational numbers have 
representations of types (ii) and (iii) above for which the digits ai become 
'periodic. This condition is analogous to that of the L'uroth series when A is 
rational. 

The paper is set out as follows. In Section 2, we consider kth power ana-
logues of the Sylvester series. In Section 3, we consider kth power analogues 
of the Engel series. Finally, in Section 4, we consider kth power expansions 
that are related to a simplified version of the Lliroth series. 

For convenience we introduce the following notational conventions. The 
lower case letters a^ and an denote integers throughout the paper. Further-
more, unless otherwise stated, the lower case letter k represents a positive 
real number. 

2. Generalizations of Sylvester Series 

We introduce two different algorithms that lead to a kth power generaliza-
tion of the series of Sylvester. The first coincides with the ordinary Sylves-
ter algorithm for k = 1. The second leads to a restricted growth of the digits 
in all cases, including k = 1. 

Theorem 2.1: Let k > 0. Every real number A has a representation 

where: 

if k > 1, then a^ + l > ai > 2 for i > 1, and for i sufficiently large, 

ai + l > ai + 1, 

if 0 < k < 1, then ai + l > ai{ai - 1) + 1 for i > 1, al > 2. 

Proof: In order to obtain this result, we introduce the following algorithm: 

Given any real number A, let A-^ = A ~ ^ 0
5 ^ "^^1 ~ ^' 

Then we recursively define 

1 

A l/k + 1 for n > 1, An > 0, 

where 

An + l = An - — for An > 0. 

First, repeated application of the algorithm yields 

A = ao + Ax = H + j% + A2 = ••• - ao + }k + -Tk + ••• + i + An+r 
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Now an = [l/A^k] + 1 implies that, for 0 < An, (an, - l)k < l/An < ak. Thus, 

_1_ 
An * a*' 

and provided an > 2 (0 < An < 1) 
1 

A„ < 
(an - l)k 

Now 0 < i41 < 1 implies al > 2 and 

_L _i_ _JL -
Ar, — A-, — 77 > r — T — U. 
z l a\ a£ a± 

Continuing this process inductively we see that An > 0 for all n. Furthermore, 
since {An} is a strictly decreasing sequence of positive values, we deduce that 
a
n+\ - a

n - 2 f° r ̂  - 1- Therefore, 
_1_ 1 1_ _ ^n "• (an " X ) f e 

^n + 1 " An " a£ " (a„ - Dk ~ ak~ (an - l)k ak 

1 (an - l)ka^ 

Thus, 

In the case 0 < k < 15 ak - (an - l)k < 1; so 

an+l > (an - l)an + 1, n > 1. 

In the case k > 1, we have 

an+1 > an + 1 
provided 

(an - l)k 

(an - 1)' 
> 1. 

This is true if an > 2llkl {2llk - 1). and if An < (2l,k - l)fc/2. On the contrary, 
suppose that 

r ?1,k i 

say. Then 

K + \ = K~ A - ± An n + 1 " n a* \ " (c(k))k' 

Now, either An + l < (21/k - Dfe/2 or 

Thus, at each stage, An+i is decreasing by at least a fixed constant, so after a 
finite number of steps we must reach a stage at which Aj < (2*-'k - 1)^/2. The 
result for k > 1 now follows, since 

1 1 
J + n (aJ + n - l)k (c(k) +n - l)k 

For 0 < k < 1, an+ 1 > (a„ - l)an + 1 > an + 1 as an > 2; hence, 
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1 
A < __ + o as n -> °°. 

(n + l)k 

A slight modification to the algorithm leads to the following results. 

Theorem 2.2: Let k > 0. Every real number A has a representation 
1 1 1 

A = a0 + ~ +~k + ~~k + "' 
a\ a£ a^ 

where 
an + 1 > an > 2 for n > 1, 

and for n sufficiently large, 

a„ + 1 < a n + 1 < 21/fean + 1. 

Proof: We use the same algorithm as previously, except that now we let 

an = [(j-) ] + 1 for n > 1, 4„ > 0. 

As before, an + l > an > 2 for n > 1, but now 
2 2 
—r < i4M < -r- if 0 < Ay. < 1. 
a* n (an - 1)* 

Therefore, for n > 1, 

and 

Also, 

So 

A =A --L >-! 
n+1 n k k 

A , , < 
2 1 2a* - (a„ - l)fe 

n +1 (an - l)fc a£ a£(a n - 1)' 

2 2a«(an - 1) k(„ _ n * 

a"+1 > An + 1 ~ 2af- \an~ Dk' 

and we have an + 1 ^ an + 1, provided that 

2a£ - (a„ - l)k 

This is easily seen to be true if an > 3l^k/(31^k ~ 21/k) and if 

An argument similar to that used in the previous proof shows that these 
conditions must hold after at most a finite number of steps. Thereafter, as 
before, A n •> 0 as n -> °°, and the result follows. 

We note in particular that by setting k = 1 in Theorem 2.2 we get an ana-
logue of the Sylvester series 

1 1 1 

where an+l > an > 3 for n > 1 and for n sufficiently large 
an + 1 < an+i < 2an + 1. 
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This is a much milder growth condition than the condition an + 1 > an(an - 1) + 1 
for ft > 1 of Sylvester,. However, under these weaker conditions we no longer 
obtain uniqueness for the expansions. For example, if we let instead 

m vl/fcn 
+ i . 

where 77? > 1 is \ a fixed constant, we obtain a new expansion for A where the 
digits satisfy very similar growth conditions. 

As a particular case of these expansions, we note that, by definition, the 
Riemann zeta function £(fe) for k > 1 has expansion 

2k 3k kk 

EulerTs well-known formula for C(2tfz), m = 1, 2, 3, . .., then yields 

2Zm % ~ — = 1 + -T- + —z- + -y- + • • • , 
m (2m) I 22m 32m klm 

where Bm i s a B e r n o u l l i number. 

3 . A G e n e r a l i z a t i o n of t h e E n g e l S e r i e s 

Using a l g o r i t h m s e s s e n t i a l l y s i m i l a r t o t h o s e i n t r o d u c e d i n S e c t i o n 2 , we 
o b t a i n kth power a n a l o g u e s of t h e Engel s e r i e s . 

Theorem 3.1: Le t k > 0 . Every r e a l number A h a s a r e p r e s e n t a t i o n 
1 1 1 

A = a 0 + —r + ;: + + - . - , 
a\ (ala2)K (ala2a3)K 

w h e r e : 

if k > 1, then al > 2, ai > 1 for i > 1, and at > 2 infinitely often, 

if 0 < k < 1, then a.., > a.- > 2 for i > 1. 

Proof: We make use of the following algorithm. Given any real number A, let ^ 
= A - an, 0 < ^ 4 1 ̂  1. Then we recursively define 

where 

An+l = <&K - 1 for A„ > 0. 

First, repeated application of the above algorithm yields 

1 A2 
A = aQ + A1 = a0 + ~r + -* 

CI -I CI -I 

an + — + 
1 1 1 . A n + 1 

al Kd^a^) (ala2 • • • <z„) \a^a2 ... a„) 

Again, If An > 0, we have An > l/a„, and if also an ^ 2, then 

1 

(an » 1)* 
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Now 0 < Ai < 1 implies d\ > 2 and A2= a\A - 1 > 0, thus a2 ^ 1. Continuing the 
process inductively we see that An > 0 and hence an > 1 for all n. We consider 
now the case k > 1. Suppose an ^ 2, then 

4 n + 1 = aX - 1 s a" - 1 - (l + - ^ — ) * - 1 £ 2* - 1, 
(an - 1) K \ a„ - 1/ 

since we have assumed an ^ 2. Now, if .̂n + i ̂  1, then an + i ̂  2. Otherwise an + i 
= 1 and ^4n+2 = ^n+l ~ 1- Continuing this process, we see that after at most 
[2k - 1] steps with 

an+i = *» ^n+t+1 = An+i * An+I ~ V5 

we must reach a stage at which 

^n + J- < 1 and an + J- > 2. 

We deduce that the sequence {An} is bounded above by 2^-1 for all n. Further-
more, there exists a sequence of integers n\ - 0 < n2 < n$ < . . . such that 

0 < Ani+1 < 1, a n i + 1 > 2, 

and an = 1 for all other n > 1. Then 

0 < 
{axa2 . . . an.)k 2k(i~l) 

and so £„. -> 4 as £ •> °°, where 
1 1 1 A n + l Sn = a0 + — + + . . . + = A 

ax (ala2) (a1 . . . an) (a1 . . . an)K 

Now let ft^-i < n < n^. Then Sn < Sn < Sni , and n -* °°  iff i •> <». So 5n •> 4 
as n -> oo, i.e., the series converges. For the case 0 < k < 1, If an > 2, then 

fc 1 (an - 1)* # al 
a*, > > — - , since An + ] < - 1. 

Rn+i ccn - (an - i; (an - i) 
Now for k < 1, a„ - (a„ - l)k ^ 1 and since a^ > 2 we deduce that an + 1 > an > 2 
for all n > 1. Thus, 

n + l 1 
— < — — •> 0 as n -> ° ° , (ax ... a n ) k 2** 

and again the series converges. 

This result gives the ordinary Engel series for k = 1. 

It is possible to further restrict the growth of the digits a^ , so that for 
i > 1 they need only take on the values ai = 1 and a^ - 2, for any k > 1. 

Theorem 3.2: Let fc > 0. Every real number A has a representation 
1 1 1 

A = an + — + + 

where: 

If k > 1, then a2 = 2, 1 < ai < 2 for i > 2, and a^ = 2 infinitely often, 
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If 0 < k < 1, then a1 > 2, 1 < ai < 1 + [21/*] for i > 1, 
and a^ > 2 infinitely often. 

Proof: We use the same algorithm as in Theorem 3.1 except that now we let 

A l = A - aQ9 1 < A 1 < 2, 

2 \l/fcl 
and 

<z„ = + 1 for n > 1, An > 0. 

As in the previous result, An > 0 and an > 1 for all n > 1. Also, 

4W > -T 

which implies 

and, in the case k > 1, 

a*X - 1 > 1 

an+l = X + 
2 \l/k" 

fc) 1 + 2l/k < 3. 

Thus, 1 < an < 2 for n > 2, and (since 1 < Ax < 2) a\ > 2. Also provided an = 2 
(the case an > 2 cannot occur for n > 1, by the preceding inequalities) we get 

A„ 
(an - IV 

= 2 and ^ n + 1 < 
2aC 

(a„ » D ? 
1 = 2 fe + 1 1, 

since we assumed an = 2. Now, in the same way as in the previous theorem, after 
at most [2k+l - 1] steps of an+i = 1, we must reach a stage at which An + J- < 2 
and an+j = 2. Therefore, the sequence {An} is bounded above by 2fc+1 - 1 for all 
n*> 1. The convergence of the series for k > 1 is now shown in exactly the same 
way as in the previous theorem. The proof for 0 < k < 1 is exactly the same ex-
cept that a-, > 2 and for n > 1, 

1 < an < 1 + [21/*]. 

In particular, by setting k = 
Engel series 

1 1 1 

1 in Theorem 3.2, we get an analogue of the 

A = an + 
0 a 

+ 

where ax = 2, 1 < ai < 2 for £ > 2 and a^ = 2 infinitely often. Compare this 
to the growth condition ai+i > ai > 2 of Engel. Again under these weaker 
conditions the expansion is not unique. For example, in Section 4 we consider 
a different algorithm which for k = 1 gives another series with the same form 
and conditions on the digits, as the series noted here. 

We note as well that, if we had defined A± = A - a0 with 0 < AY < 1, as we 
did in Theorem 3.1, the digits obtained would have satisfied the same con-
ditions as above for i > 2, but would have had a\ > 2 if 0 < Ax < l/2k_1. The 
representation thus obtained would no longer be entirely in a "binary" form. 

The representation of rational numbers when k takes on integer values 1, 2, 
3, ... is also of interest. The condition that holds, i.e., that A is rational 
if and only if the digits in the expansion eventually become periodic, 
corresponds to the criterion for the representation of rational numbers via the 
Liiroth series. The result below applies to both the algorithms of Theorem 3.1 
and Theorem 3.2. 

1989] 55 



REPRESENTATIONS FOR REAL NUMBERS VIA kth POWERS OF INTEGERS 

Proposition 3.3: Let k = 1, 2, 3, ... . The digits in the kth power expansions 
of Theorem 3.1 (or Theorem 3.2) become periodic if and only if A is rational. 

Proof: Suppose firstly that A^ = p/q is rational (with p, q e 1 ) . Then, since 
k G M, each 4̂„ is also rational, with 

An = a»k_!>!„„! - 1 = ak_x{a^2An_2 - 1) - 1 

= ... = akAl + b = V-f, 

where ae M, b e Z. Now, for the first algorithm (Theorem 3.1) we have 

0 < An=Pf<2k - I. 

Thus, every 

(2fe - l)q\ n 2 3 
71 \q q q 

and so there exist m, n e M such that i4n = ^4n + m. Then the algorithm applied to 
An + m gives the same successive digits as when applied to An9 i.e., the digits 
become periodic. The same argument applies in the case of the second algorithm 
except that now 0 < An = pn/q < 2k+l - 1. 

Conversely, suppose that eventually an = an+m. If we use the notation 

Xn - a{ 3 + 

and l e t ar = (a^a 

A = Xn 

= K 

+ 

+ 

+ 

+ 

1 1 
al (ala2) 

2 • • • dr) y a n d aVc = 

%-l ( W ^nan + l + 

l"X" + FT" + " 

( l X 

1 (I 1 
an-l\an ana

n+l 

1 
(ax . . . an_x)k 

- an+n_1/an_1, we 

1 
• • • + k k 

a X + i ••• 
1 

••• + —n< 

1 
• " + -T~k 

have 

un+m-l/ 

' an+m~l! 

i . - l ' ' 1 + 1 1 
+ — + 

= a rational number. 

Note that for the ordinary Engel series the condition an+l > an implies that for 
some n sufficiently large an+^ = an for all i > 1. 

4. kth Power Series Related to the Luroth Series 

We could at this stage investigate expansions for real numbers whose terms 
take the form of the terms of the Luroth series raised to a power. However, we 
consider instead a similar type of algorithm which leads to an expansion of 
simpler form, yet where the digits satisfy similar conditions. In particular, 
by setting k - 2 in the results below, we obtain a series expansion for real 
numbers with the appearance of a simplified Luroth series. 

Theorem 4.1: Let k > 0. Every real number A has a representation ̂  
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1 1 1 1 
A = aQ + + ~-r + + + . . . , 

al ala2 (ala2)Ka3 {axa2a3r ah 

where: 

if k > 1, then ax > 2, at > 1 for i > 1, and a^ > 2 infinitely often, 

if 0 < k < 1, then a- + 1 > a { > 2 for i > L 
Proof: We derive this result from the following algorithm. Given any real num-
ber A9 let A± = A - a , 0 < Al < 1. Then we recursively define 

an = 1 + \f-\ for w > 1, An > 0, 

where 

^n + 1 = <%K ~ 4 " 1 for An > 0. 

Applying this algorithm repeatedly, we obtain 

A = an + A, = an + — + —r u x u ax a£ 

= an + 

1 . ̂ 2 _ 
fc ~ " * " 
1 

1 1 An + ] 
0 ' „k„ ' ' , x/c ax a x a 2 (ax ... a n_ x ) a n (ax ... an)k 

Now a„ = 1 + [l/An] implies that for A n > 0, 
1 

An > — , 
an 

and provided an > 2 
1 4„ < 

1 

Now 0 < i4]_ < 1 implies that al > 2 and A 2 = a ^ - a i " 1 > 0; thus a2 > I. Con-
tinuing this process inductively, we see that A n > 0; hence, an > 1 for all n. 
Consider the case k > 1. Suppose now that a n > 2; then 

A ^ = <Ai„ - ak~l < _ ^ _ - ^ - 1 = -T2L 
ak~l 

an+l ^n^n "n ^ ~ r - a - _ v -

Now if ̂ n + 1 < 1, then an + i > 2. Otherwise, a n + 1 = 1 and A n + 2 = >4n + 1 - 1. Con-
tinuing this process, we see that after at most [an~ I(an - 1)] steps with 

an + i = 1, A n + i + l = An + i - 1 = A n + l - 1, 

we must reach a stage at which A n + j < 1 and a n + J- > 2. Hence, there exists a se-
quence of integers nl = 0 < n 2 < n 3 < ... such that 

0 < A n i + l < 1, a n . + 1 > 2, and a„ = 1 

for all other n > 1. Then 

rz • + 1 1 
0 < ^ - ± i 

( a , a 9 . . . a„.)k 2kU~U ' 

and so 5 n , -> ^ a s i -> °°, where 

1 1 ^rc+i 5 n = a 0 + — -f . . . + =-— = A ^ r-
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Now l e t ni_l < n < n^. Then 

£ n . < Sn < Sn , and n + °° i f f i •> °°. 

So 5n-> A a s n -> °°, and t h e s e r i e s c o n v e r g e s . For t h e c a s e 0 < k < l , ±fan>2 
t h e n 

1 an - l 

> > 
a fc-l 

Since k < 1, a J l < 1, and as an > 2 we deduce that a , > a > 2 for all n > 1. 
w 1 n+l n 

Thus, 
^n + 1 1 

< _ ^ -> 0 as n ->- °°, 
(a: ... a n ) k 2fen 

and again the series converges to A. 
We note that by setting k = 2 in Theorem 4.1 we obtain the expansion 

1 ! 1 
A = an H + — ~ — + 5 — + . .., 

u aY afa2 (ala2)Aa3 

where a\ > 2, a^ ^ 1 for i > 1, and a^ > 2 infinitely often. In many ways this 
could be regarded as a simplified version of the Lliroth series. In addition, 
we shall show shortly that, as in the Liiroth case, A is rational if and only if 
the digits in the expansion become periodic. 

A second algorithm for k > 1 leads to a "binary" series of this type where 
the digits a^ are equal to 1 or 2, for i > 1. 

Theorem 4.2: Let k > 0. Every real number A has a representation 

1 1 1 
A = a0 + 

a1
 aia2 (a1a2) a3 

where: 

If k > 1, then ax = 2, 1 < a^ < 2 for £ > 2, and ai = 2 infinitely often, 

if 0 < fc < 1, then a, = 2, 1 < a-,, < 1 + 2a\~k for i > 1, 
and â- > 2 infinitely often. 

Proof: We use the algorithm of Theorem 4.1 except that now we let A-, = A - aQ, 
1 < AY < 2, and 

zn = 1 + j-1 for n > 1, i4„ > 0. 

In the same way as before, we can show An > 0 and an ^ 1 for all n > 1. 
Also in this case 

2 
An > — 

which implies 

A = nkA - ^k-1 > ^-1 

It follows that for k > 1 
, 2 

1 + 
LA

n+l-
< I + 5 ^ 3 -
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Thus, 1 < an < 2 for n > 2 and, as 1 < ̂  < 2, a } = 2. Also, provided an = 2 
(the case an > 2 cannot occur from the above), we get 

A < ± - 9 
n " a - 1 5 

and 
2ak 

A < — __ nk-\ _ o ofc-1 

since we assumed an = 2. Now in the same way as in the previous theorem, after 
at most [3.2* l] steps of an+i = 1, we reach a stage at which A n + j < 2 and an+j 
= 2. The convergence of the series for k > 1 is now shown in exactly the same 
way as in the previous theorem. However here, unlike that case, the sequence 
{An} is bounded above for all n by a fixed constant as well. The proof for 0 < 
k < 1 is the same except that we now have, for n > 1, 

A n + 1 < 3.2^-1 < 3, and an + 1 < 1 + 2a\'K 

We consider now the expansion of rational numbers via these algorithms when 
k is a positive integer. We show that as in the previous section A is rational 
if and only if A has an expansion in which the digits become periodic. 

Proposition 4.3: Let k = 1, 2, 3, . . . . The digits in the kth power expansions 
of Theorem 4.1 (or Theorem 4.2) become periodic if and only if A is rational. 

Proof: First suppose that the expansion is periodic, that is, eventually 

an ~ an+m' 

Then with the notation 

1 1 1 
X„ = an + — + k ( \k 

Ia2 ^al ''' an-2) an-l 

and ar = (a]_a2 . . . av)K , a* = otw + m _ 1 / a n _ 1 , we have 
1 

(an . . . cLn+m_2) an + m_l 

1 
a*(an . . . an + m_2)kan + m_1 

alan ala*an+l 

1 / 1 
= Xn + — 

an-l\an 
a„a nan + l 

^an ••• a
n+m-2) an+m-l 

)(l + — + \ + • . •) 

= a rational. 

Conversely, suppose A l = p/q is rational (with p, <? € I ) . Then, since / e e l , 
each A n is also rational, with 

An = ak A - afc-l = ak'\lak 4 0 - a k " ^ - ak~\ 
n n-l n-l n-l n - \ \ n-2 n-2 n-2/ n-l 

= •-• = akAl + b = pn/?. 
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where b e Z, a, p e ! . Now in the case of the second algorithm (Theorem 4.2) 

0 < A„ = P IQ ^ 3.2k~l. 
Thus, every 

2 3.2k-lq) 
A„ e 1 

q> q> 
and we deduce that the expansion becomes periodic in the same way as in 
Proposition 3.3. In the case of the algorithm of Theorem 4.1, we do not have 
a fixed bound for An. However, when A is rational, 

1 . , -, , 
< q + 1 1 + 1 + 

as pn > 1 for 
above by an An 

Am < 
a 

ln > 0. Using the fact that any An for which ar 
for which am > 2, and that (for am > 2) 

fc-1 

1 is bounded 

am-\ 
it follows that, for all n > 1, 

An < (q + l)k"l. 

Thus, every 

4- I)*" {I 1 
\?' q> -*> 

(q 
* } • 

and again we can deduce that the expansion must eventually become periodic. 
In summary, we have found new classes of representations for real numbers 

that are related to the classical series of Sylvester, Engel, and Liiroth. In 
many cases, the expansions require very mild growth conditions on the digits 
and share with the Luroth series the property of begin periodic when a number 
is rational. Unlike the classical series, however, the expansions for real 
numbers with k * I are not unique, slightly different algorithms yielding 
series with the same properties, but with different digits for the same real 
number A. 
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