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Le t {xn}n>i be a s equence of p o s i t i v e r e a l number s . The ^ - s e q u e n c e c o r r e -
spond ing t o {xn} i s d e f i n e d a s h a v i n g a s i t s n t h t e rm 

^n + 1 x 

for all integers n > 1. One of the purposes of this note is to compare the se-
quence {xn} with its corresponding ^-sequence {qn} so that conditions imposed 
on one of them will yield results concerning the other. 

1. Example: Consider the Fibonacci sequence {xn} defined recursively by 

ar1 = 1, x2 = 1, xn + l = xn + xn_l if n > 2. 

It is well known that the q-sequence corresponding to {xn} converges to the 
real number ( 1 + /5)/2. This example shows that divergent sequences {xn} can 
have corresponding ^-sequences that converge. On the other hand, examples can 
be found of convergent sequences of quotients of convergent sequences. See 
Theorem 5 below. 

Whenever a sequence {xn} is defined recursively, say 

xY = a, x2 = b, xn+l = f(xn, xn_l) for n > 2 

and positive numbers a and b, let S ( a, b , /) denote the corresponding q-
sequence, where f is a nonnegative function of two real variables which is 
defined and positive in the first quadrant and defined on the positive z/-axis. 
If iqn} converges, let z be its limit 

z = lim a . 

2. Theorem: Let {qn} = S(a, b, f) be the q-sequence corresponding to a sequence 
{xn}. If iqn} converges and f is continuous and positively homogeneous of de-
gree 1 [f(Xx, Xy) = \f(x, y) for A > 0], then z satisfies the equation 

w2= f(w, 1). 

Proof: Since / is positively homogeneous of degree 1, it follows that 

w n = ̂  - fiXn: Xn~l) = f{^> i) - /«„. i). 
•Sz-1 xn-\ \ x r c - l / 

C o n s e q u e n t l y , z2- = f(z, 1) must h o l d b e c a u s e of t h e c o n t i n u i t y of / . 

3 . Examples: (1) For t h e F i b o n a c c i s e q u e n c e , one h a s 

f(xn, xn_l) = xn + xn_l 
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and the limit z = (1 + /5~)/2 satisfies f (z , 1) = ((1 + /5)/2)2, in agreement 
with the theorem. 

(2) Consider {qn} = S(ls 2, xn + 2#n_1) • T o find s, one might 
want first to solve the quadratic equation z2- = z + 2, whose positive solution 
is z = 2. Unfortunately, Theorem 2 as stated does not guarantee that lim q = 
2. If the limit exists, then n 

<••> - ^ - ^ " - ^ - ' + > /0£r) - • • *'«. 
implies 2 - 2. A procedure for finding the limit is presented in the next 
result. 

4. Theorem: Let b > 0 and c > 0 be real numbers. If /(#, 2/) = bx + cy, let 
{a:n} be the sequence defined recursively by 

xl = p > 0, x2 = q > 0, and ̂ n + 1 = /(#„, ̂ n_x) for n > 2. 

Then the (^-sequence S(p9 q, f) converges to 

z = (b + /&2 + 4c)/2 

independent of the initial values p and q. Moreover, the sequence iqn+i - qn) 
is either the constant sequence {0} or oscillates between positive and negative 
values. 

Proof: Note that for n > 2, 

x„Ml bx„ + <?#„ _-, <? 
6 + 4n + l Xn Xn

 D + <7/ 

and hence, for n > 3, 

<7n-l ~ <?n 
^n^n-1 

Consequently, {^n + 1 - qn} is either the sequence {0} or oscillates between posi-
tive and negative values. Also, 

c 
qn = b + for n > 3 

i m p l i e s t h a t qnqn_l = bqn_1 + c > b1 + c for n > 4 , and hence 

Kn+1 " ? J <? 
? n ? n^n -1 &2 + 

I f d = c/ (2?2 + c ) , t h e n 0 < d < 1 and 

k n + i - qn\ * an~*Uk - ?3I f o r n - 3s 

Since 

n = 3 

converges, it follows that iqn} is a Cauchy sequence, thus it converges to some 
number z > 0. Theorem 2 shows that z2 = bz + <? must hold; therefore, 

2 = . D 
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One can, in some cases, compare the behavior of a given sequence {xn} with 
that of its corresponding q-sequence. It is to be pointed out here that the 
sequences referred to in the following result are not necessarily generated by 
recursion 

5. Theorem: Let {xn} be a sequence of positive numbers and let {qn} denote its 
corresponding ^-sequence. Then 

(1) If {qn} e £Q5 then {xn} e £(1); hence {xn} £ <?Q. 

(2) If {xn} £ a - cQ9 then lim qn = 1. 

(i^K Cn, and c denote' the spaces of summable, convergent to zero, and conver-
gent sequences, respectively.) 

6. Example: Consider the sequence defined by 

= 1 

Since 4n2 - 1 > n2, then {yn} £ SL^K Define a sequence {xn} by 

t 
X y, ~~ , 

na+yk) 
k>n 

where t > 0 is a real parameter. This sequence is well defined, because the 
infinite product 

n (i + yk) 
k>-n 

converges. It follows that {1 + y } is a ^-sequence. Indeed, 

x na + yk) 
n + 1 _ k>n 2_ 

k>n + 1 K 

for n > 1. A simple computation shows that 

r w i _̂  N 2 2 4 4 6 6 
, n x

( 1 + V = 1 3 3 5 5 7 • • • • 

where the product on the right was shown by John Wallis (1616-1703) to have the 
value TT/2. 

The next result is an attempt to answer a question suggested by the pre-
vious example: What sequences are q-sequences? 

7. Theorem: Let {yn} be a sequence of positive terms in £(1). Then, there ex-
ists a 1-parameter family of sequences ixn(t)} for t > 0 such that 

*n+l(*) i 

for all n > 1. 

Proof: In order to have that #„ + ]_/#„ = 1 + 2/n> o n e must solve the infinite lin-
ear system 
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'^1(1 + yx) 
\x (1 + y ) ^0 = 0 

Set xl = t, an arbitrary positive real number. Then x2 = t(l + y\) , x^ 
y\)(l + 2/2)' and by induction, 

xn + l = t n (1 + y k ) . 
k<n 

Therefore5 the ^-sequence corresponding to {x (£) } is given by 

x (f) t II (1 + y, ) 

= t ( l + 

Xn^ t El (1 + Z/7<) 
= 1 + v . 

fe < n - 1 

This establishes the result, 

In Theorem 2 above, the limit z of a convergent g-sequence corresponding to 
a recursively generated sequence was shown to satisfy a functional equation 
involving the generating function for the original sequence. This generating 
function was required to be positively homogeneous of degree 1, continuous and 
nonnegative in the first quadrant. According to Theorem 4, if the generating 
function is the restriction of a linear form, then the limit of the ^-sequence 
can be explicitly calculated and does not depend on the initial two terms of 
the original sequence. 

The result that follows explores the nature of the functional equation by 
characterizing the class of functions to which Theorem 2 applies and provides 
examples to show that the independence of the limit z of a ^-sequence with 
respect to the initial terms p and q of the original sequence, which was one of 
the conclusions obtained in Theorem 4, no longer holds in the general case. 

8. Theorem: A function /: [0, °°) x (0, °°) -> [0, °°) is continuous, positive on 
(0, c o ) 2

5 and positively homogeneous of degree 1 if and only if there is a con-
tinuous function y : (0, °°) -> (0, °°) which is such that 

(i) Y(t) = /(l, t) for all t G (0, «,) 
and , . 
(ii) lim , exists and is finite. 

t> 00 t 

Proof: Suppose /: [0, °°) x (0, °°) -* [0, 00) is continuous, positive on (0, ° ° )2 

and positively homogeneous of degree 1. Set 

y(t) = /(l, t) for t e (0, oo). 

Then y is continuous and positive, and 

l i m ^ i = lim fU, l) =/(0, 1) 

exists and is finite, due to the continuity of / and the fact that / is posi-
tively homogeneous of degree 1. 

Conversely, suppose that y : (0, °°) -> (0, °°) is continuous and that 

t->co t 

exists and is finite. Set 

a = lim ^ 
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and define / on [0, °°) x (0, °°) by setting 

'xy(y/x) if x * 0 

[ya if x = 0. 
f{x, y) 

f is continuous for x > 0 and y > 0 since is continuous on (0, °°) , (x, y) -> 
y/x is continuous for x > 0 and y > 0 and the projection (x, 2/) •> x is continu-
ous everywhere. 

If S^ = { (x, y) : x > 0, y > 0}, S2 = {(0, y) i y > 0} and if z/Q is a fixed 
positive number, then r • 

K ) 
lim /(a;5 z/) = lim xy( — j = lim y 

(x,y) + (0,y0) (*, y)+ (0,2/0) ^ (a:, z/) > (0, z/Q) 
(*,Z/)G ^i (x, y)e S1 (x, y) e Sx 

I 
X 

yQa 

f(0, y0), 

and 

Thus, 

lim f(x, y) = lim ay = yQa = /(0, 2/0). 
U , z/) + (0, z/Q) z/ -> i/0 

(x,y) e 52 

lim /(x, z/) = /(0, z/0), 
(x,y)+(0,yQ) 

and / is continuous at (0, z/Q). It has now been demonstrated that / is contin-
uous on [0, °°) x (0, °°) . 

The function / is also positively homogeneous of degree 1. For, if X > 0, 

f(Xx, Xy) = <wi) 
Aty)a 

i f x * 0 

i f x = 0 
WD 
,A(z/a) 

i f ^ * 0 

i f a; = 0 . 

T h e r e f o r e , f(Xx, Xy) = Xf(x, y). • 

S ince x , = f(x 9 x , ) i m p l i e s 

^ = / ( l 5 t ) = Y ( i ) ' 
the question of the convergence of ^-sequences is equivalent to examining the 
convergence of sequences {q } generated by choosing q2 > 0 and defining q for 
n > 3 by 

* « = Yfe) 
for some positive continuous function y on (0, °°) having the property that 

t > oo t 

exists and is finite. Using this fact, examples can be constructed quite 
easily. The following examples, which were constructed in this way, show that 
limits of ^-sequences depend in general on the starting values X-, and x~ . 

9. Example: Let y(t) = l/t2. Starting with q2 = 1, it follows that qn = 1 for 
all n and lim qn = 1. However, if q„ = 2, then it is easy to show that 

t + < 

>2n"2 

for n > 2, so that {gn} diverges. This shows convergence is dependent on the 
starting values. In this example, 

fix, y) = xy(y/x) = x3/y2. 
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x^ and x2 could be taken as x^ = x2 = 1 and xl = 1, x2 = 2, respectively. 

10. Example: Let y(t) = 1/t and let q2 = v > 0 be arbitrarily chosen. Then 

q3 = Y ( ^ ) = P. 

Similarly, qn = r for all n > 4. Therefore, {<?„} is the constant sequence 

{r, P S ..., P 5 . . . } , 

which converges to r. In this example, it is seen that each positive real num-
ber is the limit of some ^-sequence for the same generating function. Here, 

x)= y 
Starting values may be taken as x^ = 1 and x2 = r > 0. 
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