HOW MANY 1'S ARE NEEDED?

Daniel A. Rawsthorne
13508 Bartlett St., Rockville, MD 20853
(Submitted January 1987)

Let $f(n)$ denote the number of l's necessary to express n, using the operations + and \times (and parentheses). Determining $f(n)$ is an old problem, originally considered by Mahler and Popken in 1953 [3]. We have calculated $f(n)$ for $n \leq 3^{10}$ and we present some statistics. (The reason for a power of 3 will be explained later.)

The Problem

With $f(n)$ defined as above, we have

$$
f(n)=\left\{\begin{array}{l}
1, \text { for } n=1, \text { and } \tag{1}\\
\min _{\substack{a b=n \text { or } \\
a+b=n}}\{f(a)+f(b)\}, \text { for } n>1
\end{array}\right.
$$

This formula is very time consuming to use for large n, but we know of no other way to calculate $f(n)$.

The behavior of $f(n)$ is interesting. Selfridge has shown that $3^{k}+\theta 3^{k-1}$ is the largest n for which $f(n)=3 k+\theta$, for $\theta=0, \pm 1$. His proof is by induction, and the induction step is based on the following observation: If $b(m)$ is the largest n for which $f(n)=m$, then $b(m)$ is the largest element of the set

$$
\begin{equation*}
\bigcup_{r+s=m}\{b(r)+b(s), b(r) b(s)\} . \tag{2}
\end{equation*}
$$

Using (2), it is fairly easy to show that $b(m)$ has the required form.
There are two competing conjectures about the behavior of $f(n)$ for large n. It has been conjectured that

$$
\begin{equation*}
f(n)<3(1+\varepsilon) \log _{3} n, \text { for large } n, \text { and any } \varepsilon>0 \tag{3}
\end{equation*}
$$

It has also been conjectured that there is a set S (possibly of positive density) and a positive constant c so that

$$
\begin{equation*}
f(n)>3(1+c) \log _{3} n, \text { for all } n \text { in } S \tag{4}
\end{equation*}
$$

The Results

We calculated $f(n)$, using equation (1), for $n \leq 3^{10}(59,049)$. We chose 3^{10} because we would have all n for which $f(n) \leq 30$, by Selfridge's results.

We broke the interval into 30 subintervals between the values of the form $3^{k}+\theta 3^{k-1}$ for $\theta=0, \pm 1$ and we also looked at the sets $S(m)=\{n: f(n)=m\}$, for $m=1,2, \ldots, 37$, incomplete beyond $m=30$.

Analysis of the thirty subintervals

One typical subinterval is the interval $18 \leq n<27$. The values at the "endpoints" differ by 1. If conjecture (3) were true, we would expect the values of $f(n) / \log _{3} n$ in the interval to "flatten out" and approach the values at the endpoints, as n gets large. Table 1 gives the mean and standard deviation of $f(n) / \log _{3} n$ in each interval.

While the analysis of such small values of $f(n)$ has very little to do with behavior at large n, it is clear that in this range conjecture (4) is strongly supported.

The single worst value of $f(n) / \log _{3} n$ encountered was at $n=1439$, with $f(n)$ $=26$, and $f(n) \log _{3} n=3.9281$.

TABLE 1
Mean and Standard Deviation of $f(n) / \log _{3} n$, for $a \leq n<b$

a	b	mean	std dev
1	2		0.0
2	3	3.1699	0.0
3	4	3.0	0.0
4	6	3.2915	0.1216
6	9	3.2077	0.1340
9	12	3.3350	0.2716
12	18	3.2928	0.1382
18	27	3.3613	0.2273
27	36	3.3430	0.1754
36	54	3.3653	0.1607
54	81	3.3726	0.1748
81	108	3.3959	0.1630
108	162	3.3743	0.1307
162	243	3.3973	0.1473
243	324	3.3988	0.1395
324	486	3.3996	0.1327
486	729	3.4031	0.1290
729	972	3.4031	0.1194
972	1458	3.4037	0.1191
1458	2187	3.4031	0.1130
2187	2916	3.4039	0.1043
2916	4374	3.4017	0.1040
4374	6561	3.4012	0.0995
6561	8748	3.4016	0.0945
8748	13122	3.3996	0.0931
13122	19683	3.3985	0.0893
19683	26244	3.3987	0.0860
26244	39366	3.3965	0.0840
39366	59049	3.3949	0.0806

Analysis of the sets $S(m)$
Let $S(m)=\{n: f(n)=m\}$. In Table 2 we consider the following questions about $S(m)$.

- What is its first element?
- How many elements are in $S(m)$?
- What is its last element?
- What is its average element?

One result about the sets $S(m)$ not captured in Table 2 is: If $b(m)$ and $b_{1}(m)$ are the largest and second largest elements of $S(m)$, then $b_{1}(m)=[(8 / 9) b(m)]$, where [•] is the greatest integer function.

Outline of proof: The proof is by induction.
The result is true by inspection for small values of m. For large values of m we have an equation similar to (2): $b_{1}(m)$ is the second-largest member of the set

$$
\begin{equation*}
\bigcup_{r+s=m}\left\{b(r)+b(s), b(r) b(s), b(r)+b_{1}(s), b(r) b_{1}(s)\right\} \tag{5}
\end{equation*}
$$

For $m \geq 9$, it is easy to show that both $b(m)$ and $(8 / 9) b(m)$ belong to this set. It only remains to show that there are no elements between these two values, and this can be done by a simple case-by-case examination using the results of Selfridge and the induction hypothesis.

TABLE 2
Analysis of the sets $S(m)$

m	first	last	$\|S(\mathrm{~m})\|$	mean	median
1	1	1	1	1.0	1.0
2	2	2	1	2.0	2.0
3	3	3	1	3.0	3.0
4	4	4	1	4.0	4.0
5	5	6	2	5.5	5.5
6	7	9	3	8.0	8.0
7	10	12	2	11.0	11.0
8	11	18	6	14.5	14.5
9	17	27	6	21.3	20.5
10	22	36	7	28.4	28.0
11	23	54	14	37.7	37.5
12	41	81	16	55.2	53.5
13	47	108	20	73.3	73.5
14	59	162	34	100.4	98.5
15	89	243	42	141.9	137.0
16	107	324	56	191.7	185.5
17	167	486	84	266.0	257.5
18	179	729	108	371.8	362.5
19	263	972	152	501.3	482.5
20	347	1458	214	701.3	675.0
21	467	2187	295	966.1	931.0
22	683	2916	398	1335.4	1284.5
23	719	4374	569	1842.9	1783.0
24	1223	6561	763	2571.0	2478.0
25	1438	8748	1094	3513.8	3382.5
26	1439	13122	1475	4914.9	4734.0
27	2879	19683	2058	6792.4	6533.5
28	3767	26244	2878	9378.7	9020.0
29	4283	39366	3929	13061.5	12534.0
30	6299	59049	5493	18051.5	17315.0
31	10079	78732			
32	11807	118098			
33	15287	177147			
34	21599	236196			
35	33599	354294			
36	45197	531441			
37	56039	708588			

Comments

In his paper [2], Guy relays some questions about the function $f(n)$. We comment on three of these:
Q : For what values a and b does $f\left(2^{a} 3^{b}\right)=2 a+3 b$?
A: $f\left(2^{a} 3^{b}\right)=2 a+3 b$ for all $2^{a} 3^{b}<3^{10}$, at least.
Q : If $f\left(2^{a} 3^{b}\right)=2 a+3 b$ and there is a larger n^{\prime} so that $f\left(n^{\prime}\right)=2 a+3 b$ $(a, b \geq 0)$, must $n^{\prime}=2^{a} 3^{b}$, for some r, s ?

A: No. Two counterexamples are $2^{7}<3^{3} 5$, with $f\left(2^{7}\right)=f\left(3^{3} 5\right)=14$, and $2^{7} 3^{2}<3^{5} 5$, with $f\left(2^{7} 3^{2}\right)=f\left(3^{5} 5\right)=20$.
Q : When the value of $f(n)$ is of the form $f(a)=f(b)$, with $a+b=n$, and this minimum is not achieved as a product, is either a or b equal to 1 ?
A : Yes, at least for $n \leq 3^{10}$.
'The calculation of $f(n)$ was performed on a Symbolics 3645 LISP machine using equation (1), and we used over 50 hours of CPU time.

References

1. Richard K. Guy. Unsolved Problems in Number Theory, Problem F26. New York: Springer-Verlag, 1981.
2. Richard K. Guy. "Some Suspiciously Simple Sequences." American Math. Monthly 93 (1986):186-190.
3. K. Mahler \& J. Popken. "On a Maximum Problem in Arithmetic." (Dutch). Nieuw Arch. Wiskunde (3) 1 (1953):1-15, MR 14, 852e.
