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1. Introduction 

Let k be a positive integer and let {Tn}°° = () be a kth~order integral linear 
recurrence defined by 

Tn + k = alTn + k-l + a2Tn + K-Z + ' " ' + %T
n d > 

with arbitrary initial terms TQS TI$ . .., 2̂ -1 • Associated with the recursion 
relation (1) is the characteristic polynomial 

f(x) = xk - axxk'1 - ... - ak_Yx - ak (2) 

with characteristic roots P]_, P23 • • • *
 vk • ^e will seek subsequences of {Tn} 

such that the recursion relation (1) is also satisfied as a congruence modulo 
some integer 777. Specifically, we will endeavor to find positive integers d and 
n such that 

Tn + kd E aiTn + (k-l)d + a2Tn+(k-2)d + 8 0 ' + <*k-lTn + d + akTn ( m o d m) ( 3 ) 

for all nonnegative integers n. This investigation was suggested by Freitag 
[2] and by Freitag and Phillips [3] and [4], and will generalize the results of 
these papers. 

Two approaches will be taken in satisfying congruence (3) • In the first 
approach, given a fixed modulus m we will seek to find integers d such that (3) 
is satisfied. Along these lines, Freitag [2] proved the following theorem: 

Theorem 1: Let {Fn} as usual denote the Fibonacci sequence. Then 
Fn + 2d E Fn + d + ?n (™>d 10) (4) 

for all nonnegative integers n if and only if d = 1 or 5 (mod 12),Q 

The second approach will be to take the integer d from among the integers 
appearing in a specified sequence such as the sequence of primes and then find 
moduli m9 depending on d, such that congruence (3) is satisfied. Corresponding 
to this approach, Freitag and Phillips proved Theorems 2 and 3 in [3] and [4] 9 
respectively. 

Theorem 2: Let {Tn } be a second-order recurrence defined by 

Tn + 2 = alTn + l + a2Tn' 
Then, if p is a prime greater than 3, 

Tn+2p = *lTn+p + *2Tn < m o d 2P> 

for all nonnegative integers n.Q 

Theorem 3: Let {Tn } be a k th-order recurrence with distinct characteristic roots 
satisfying 

Tn+k = alTn+k-l + a2Tn + k-Z + ••• + <ZkTn . 

Then, if p is a prime, 
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Tn + kp E alTn+(k-l)p + a2Tn+{k-2)p + • • • + ^k-lTn+p + akTn ( m o d P> 

for a l l nonnegative i n t e g e r s n.Q 

2. Definitions and Known Results 

We will need the following definitions and lemmas to continue. 

Lemma 1: Let {Tn} be a £:th-order linear recurrence with distinct characteris-
tic roots r^9 i>2, ..., Pm. Then 

?n = £ (ci° )+ 4"n + ••• + ^ " ' - " n 8 ' - 1 ) ^ , 
i = 1 

where the <?. are complex constants and s^ is the multiplicity of the root î  . 

Proof: This is a classical result in the theory of finite differences (see, for 
example, Milne-Thomson [5, Ch. XIII]).• 

Definition 1: The primary linear recurrence {Vn}^=0 is tn e recurrence satisfy-
ing (1) and defined by 

where rl9 r2, . . . , vk are the zeros of the characteristic polynomial (2). If 
any characteristic root v. = 0, we define r9 to be 1. 

Lemma 2: Suppose {Tn} is a kth-order linear recurrence satisfying 

Tn + k = alTn + k-l + a2Tn+k-2 + * " * + akTn ' 

Suppose m is a positive integer such that (a^, m) = 1. Then {Tn} is purely 
periodic modulo m. 

Proof: This is proved by Carmichael [1, p. 344].D 

Lemma 3: Let {Tn} be a fcth-order integral linear recurrence with character-
istic roots P1? i»2» . . . > P̂  . Let h be a fixed positive integer, and let g be a 
fixed nonnegative integer. Then the sequence 

also satisfies a linear integral recursion relation 

Sn + k = al ^n+k-l + a2 Sn + k-2 + " ' + ak Sn> (5) 

where a[ , ai \ •••* a^ are integral constants dependent on h but not on q. 
Further, if j is a fixed integer such that 1 < j < k9 then 

af = £ <-DJ'r?r? ... rh , (6) 

where one sums over all indices 7^, i2, ..., î  such that 

1 < i < i < ... < ij < k. 

Proof: This i s proved in [6 ] .D 

3. Main Resul ts 

We now present our p r i n c i p a l theorems. 
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Theorem 4: Let {Tn } be a kth-order recurrence defined by 

Tn + k = alTn + k~l + a2Tn+k-2 + " °  + CLkTn . 

Let p be a prime. Then for all nonnegative integers b, 

Tn + kpb E a1Tn+(k_1)pb +a2Tn+(k_2)pb + . . . + ak_lTn+pb + akTn (mod p ) , 

where n is any nonnegative integer. 

Proof: Let rls r^, ..., rm be the distinct characteristic roots of {Tn}. Let R 
denote the integers of the algebraic number field Q{v^, v~ , . .., T

m) > where Q 
denotes the rational numbers. Let Z denote the rational integers. Let P be a 
prime ideal of R dividing p. Let a be the Frobenius automorphism of the finite 
field R/P having Z/p as a fixed field. Then a is defined by a(x) - xp. Then, 
for any nonnegative integer by oh, defined by ob(x) = xpL'9 is also an auto-
morphism of R/P fixing Z/p. 

Now, for 1 < i < m3 

vk = airk-i + a2r}~2 + ... + ak_lvi + ak. (7) 

Applying o^ to equation (7), we have, for 1 < i < m, 

k 
ob(rf) = r&b = ̂ ( a ^ - l + a^-2 + ... + afc) = Y, "j°b(ri~j) 

^ " j = i 

E J] ajrik'j)pb (mod p ) - (8) 
J = i 

By (8), (1), and Lemma 1, we have 

*w -.stK'+ 4"«+ •••+ «ri' i )»wi'>"] 
= EjH0)

 + 41)^---^ri"1)^"1K].E' 

i=1 ° ;tvv 1 y * 

= E V»+CW)P» (modP). (9) 
J =1 

Since the first and last terms of (9) are rational integers, we have 

k 
Tn+kpt = HajTn+{k_j)ph (modp).D 

j = i 

Remark: We note that Theorem 4 is a generalization of Theorem 3. 

Theorem 5: Let {Tn} be a /cth-order recurrence defined by 
Tn + k = ̂ n + fc-l + «27n + /c-2 + " • +

 akTn • 

Let e be a fixed positive integer such that (<?, a^) = 1. Then there exists a 
fixed modulus ̂  such that if h = 1 (mod gO , then 

where n is any nonnegative integer. 

\r}pb 

k (k-j)pb 

aJri 
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k 

Proof: If h is any positive integer, then by (5) and (6), 
Tn + kh = a l Tn + (k-l)h + a2 Tn+(k-2)h + " " + ak Tn » (10) 

where, for 1 < j < k, 

a{h) = T (~l)j+lrh rh ... r!1 , (11) 

where one sums over all indices i^9 i 2 , ..., ij such that 

1 < i l < i2 < ... < ij < k. 

Let nj = (j) . Let 1 < j < k be a fixed integer and let t(/}, t£J), . .., t^J) de-
note the ( •) algebraic integers (-I)57'*1!5. p. . . . v. , where these represent all 
the (j) products taken j at a time of the characteristic roots r^9 r2, ...9 r-
of {Tn}. By the theory of symmetric polynomials, for a fixed integer j such that 

1 < j < fe, the rij algebraic integers t± , t2 * •••> £nJ a r e t n e roots5 possibly 

with repetitions, of a monic polynomial of degree n3- with rational integral co-
efficients. 

Let {P^J)}, defined by 

be the primary linear recurrence with characteristic roots ti ,' £2 » ..., tn. . 
Since (a^, c) =1, it follows by Lemma 2 that {F^J } is purely periodic modulo c. 
Let dj denote the period modulo c of {F^J)} for 1 < j < k. Let g be the least 
common multiple of d̂  , d2> ...3 d^. Since by (11), 

it follows that if h = 1 (mod g), then 
aw = 7(j) E VU) = a ^ ( m o d o)m ( 1 2 ) 

The result now follows by (10).Q 

Corollary; Let {Tn } be a /cth-order linear recurrence defined by 
Tn + k = alTn + k-l + a2Tn+/c-2 + ' " + akTn • 

Let p be a fixed prime such that p \ ak. Then there exists a fixed modulus ̂  
such that If h = pb (mod g0 , where b is any nonnegative integer, then 

Tn+kh = «irn+oc-m + azW-a". + ••• + aA (mod P}' 
where n is any nonnegative integer. 

Proof: Let {7n} be any primary linear recurrence with characteristic roots r1$ 
^2' •••» ̂ • Then 

7P, = pf + *2* + ••• + *? = (PX + r2 + ... + r,)p* - (F^* = Py 
(mod p). 

Let the primary linear recurrences {V^} and the integers a^, where I < j < k, 
be defined as in the proof of Theorem 5. Choose the modulus g in the same man-
ner as in the proof of Theorem 5, letting p = c. Then 

T/(J) _ T/(J) , _ . 

i/pi = K̂  (mod g) 
and af > = 7«> s vp s 7<* = a, (mod p) 
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for a l l j such that 1 < j < k. The proof now follows by (10) .• 

Remark 1: Note that if p is a fixed prime, the corollary to Theorem 5 is a 
strengthening of Theorem 4. 

Remark 2: Theorem 1 follows from the corollary to Theorem 5. By the proof of 
this corollary, i t can be shown that if d = 1 or 5 (mod 12), then 

Fn+2d E Fn + d + Fn (mod 5). (13) 

Similarly, i t can be shown that if d = 1 or 2 (mod 3), then 

Fn + 2d E Fn + d + Fn (mod 2 ) . ( 1 4 ) 

It thus follows that if d = 1 or 5 (mod 12), then (14) holds. Since 2 and 5 
are relatively prime, it follows from (13)-(14) that if d = 1 or 5 (mod 12), 
then congruence (4) holds. This proves the necessity of Theorem 1. The 
sufficiency of Theorem 1 follows from the fact that {Fn} has a period modulo 10 
equal to 60. Examining (4) for all integral values of d between 1 and 60 es-
tablishes the result. 

Theorem 6: Let {Tn} be a kth-order linear recurrence defined by 

Tn + k = alTn + k-l + aZTn + k-2 + " • + akTn • 

Let c be a fixed positive integer such that (c, ak) = 1. Then for all non-
negative integers b9 there exists an infinite number of primes p of positive 
density in the set of primes such that 

Tn + kpb ~ alTn+(k-l)pb + a2Tn + {k-2)pb + ••• + ak-lTn + pb + akTn 
(mod op) , (15) 

where n is any nonnegative integer. Furthermore, there exists a fixed modulus 
g such that if p = 1 (mod g) s then congruence (15) is satisfied. 

Proof: By Theorem 4, the congruence (15) is satisfied modulo p for any prime p. 
Given the integer c, we choose the modulus g in the same manner as in the proof 
of Theorem 5. By Dirichletfs theorem on the infinitude of primes in arithmetic 
progressions, there exists an infinite number of primes p such that p E 1 (mod 
g). Further, the density of such primes is ll$(g)9 where $ denotes Euler's to-
tient function. By Theorem 5, congruence (15) is also satisfied modulo o> 
since pb is also congruent to 1 modulo g for any nonnegative integer b. Since 
we can also assume that (p, c ) = ls it follows that (15) is satisfied modulo 
cp.U 

Corollary 1: Let {Tn} be a fcth-order linear recurrence defined by 

Tn + k = alTn+k-l + a2^n + k-2 + " " " + akTn' 
Let c be a fixed prime such that c\a^. Then for all nonnegative integers b, 
there exists an infinite number of primes p of positive density in the set of 
primes such that 

Tn + kpb ~ alTn+ (k-l)Pb + a2Tn+(k-2)Pb + " • + ak~lTn + pb + akTn 

(mod cp) , (16) 

where n is any nonnegative integer. Furthermore, there exists a fixed modulus 
g such that if the prime p = o^ (mod g), where b is any nonnegative integer, 
then congruence (16) is satisfied. 
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Proof: This follows by the corollary to Theorem 5 and the proof of Theorem 6. 

Corollary 2: Let {Tn} be a second-order linear recurrence defined by 

Tn+2 = alTn+l + a2Tn ' 
Then for all primes p > 3 and for all nonnegative integers b, 

Tn+2P* E aiT
n+pt + azTn (mod 2p), (17) 

where ft is any nonnegative integer. 

Proof: Let p > 3 be a prime. By Theorem A, congruence (17) holds modulo p for 
all ft. We will show that (17) also holds modulo 2 for all ft. The corollary 
will then follow since (2, p) = 1. 

First, suppose that l\a^. Considering the characteristic polynomial f (x) 
of {Tn} modulo 2, we have 

f(x) = x2- - a±x - az = x{x - a ) (mod 2) . . 

Hence, the characteristic roots of {Tn} modulo 2 are 2̂ - E a1 (mod 2) and i^ E 0 
(mod 2). As in the proof of Theorem 5, we have that if h is any nonnegative 
integer, then 

Tn + 2h ="?\ + h +a2)Tn> (18) 
where a\ and a^ a r e defined as in equation (11). Constructing the primary 
linear recurrences {T^1^} and {V„} as in the proof of Theorem 5, we observe 
that 

V(
n

l) E ax (mod 2) (19) 

for all ft > 1 and 

Y^p E a2 = 0 (mod 2) (20) 

for all ft > 1. By (12) and (18)-(20), we see that for j = 1 or 2, 

af = v£j) E ad (mod 2) (21) 

for all positive integers./?. Letting h = pb, equation (18) and congruence (21) 
lead to the congruence 

T«+2p> = alTn+P^ + a2Tn (mod 2), 
which is what we wanted to show. 

Now, suppose that l\a^. Constructing the primary recurrences {V^} and 
{V^} as in the proof of Theorem 5, we see that {V^l)} and {V^2)} are each purely 
periodic modulo 2 by Lemma 2. Further, one can easily determine that the period 
of the second-order recurrence {V^} modulo 2 is either 2 or 3, and the period 
of the first-order recurrence {Vyp} modulo 2 is 1. It thus follows that if we 
determine the modulus g, as in the proof of Theorem 5, then g .= 2 or 3. By 
Theorem 5, if g = 2 and p is a prime such that p E 1 (mod 2), then congruence 
(17) holds modulo 2. By the corollary to Theorem 5, if g = 3 and p is a prime 
such that p E 1 or 2 (mod 3), then the congruence (17) again holds modulo 2. 
Since for any p > 3, p E 1 (mod 2) and p = 1 or 2 (mod 3), the result now fol-
lows . D 

Remark: Note that Co rollary 2 to Theorem 6 generalizes Theorem 2. 
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