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1. Introduction 

For a real sequence {ak}^>05 a§ * 0, and y e M9 consider the real array 
A{k9 ft, y) , (k9 ft) e Z X X, which satisfies the recurrence 

A(k9 n, y) = J2 a.A(k - j , n - 1, y) (1.1) 

subject to the diagonal condition 

A(k, ufc, y) = 0 for k > 0, (1.2) 

and the conditions 

4(0, 0, y) = 1 and A(fc, ft, y) = 0 for fe < 0. (1.3) 

We wish to use lattice path combinatorics to obtain known formulas for A(k9 
ft, y) . Collectively these constitute a Lagrange inversion formula. Others have 
made similar studies; our explanations are influenced by those of Raney [18] 
and Gessel [9]. We examine specific examples of recurrences and their 
solutions, the generalized Catalan arrays. We illustrate our approach by 
enumerating certain plane trees. 

For the given sequence (&/<}£ >o' le t ate; y) denote 

Y,A(k, \ik + 1, \i)xk
9 

k >o 

which we view as a diagonal series. In particular, let 

a(x) = ate; 0) = ]T ai-xk (tne initial series), 
and let * i 0 

ate) = ate; 1) (the principal diagonal series). 

For any power series, let [xk]If- xJ denote the coefficient f^ . Let 

ak = [xk]a(x) = A(k9 k + l9 1) [the principal diagonal of A(k9 n9 1)]. 

It is immediate from (1.1) and elementary properties of formal power series 
(see [3], [12]) that 

A(k9 ft, 0) = [xk]an(x). (1.4) 

The following record solutions to (1.1, 1.2, and 1.3). 

Propositions: For 777, n e Z and k9 X e Mi 
i/i \xk 

1. A(k9 ft, y) = A(k, ft, 0 ) , ft * 0. (1.5) 

2. 4(fc, ft, y) = E (l~yj)at7-4(fe - j , ft - 1, 0 ) ; A(k9 1, y) = (1 - yfc)a*. (1.6) 
j > o 
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3. A(k, m + n + \ik, A) = £ A(j, m + \ij, \)A(k - j , n + \i(k - j) , y) . (1.7) 

4. i4(fe, n + yfc, y) = [xk]an(x; y). (1.8) 

5. §(x) = a(x; y) is a unique series satisfying cj) (x) = a(xcf>^(x)) . (1.9) 

These are proven in Sections 3 and 4. In proving (1.5), we interpret the 
factor (n - \ik)/n. For (1.6) we interpret {A(k, 1, u)}fc>0. Proposition (1.7) 
is a Vandermonde-type convolution; (1.8) shows that A(k, ft, y) is a convolution 
array; (1.9) gives a functional relationship between a (x; y) and a(^) which 
immediately yields xa(x) as the compositional inverse of x/a(x). Correspond-
ingly, (1.9) with (1.4) and (1.5) yields a Lagrange inversion formula; another 
is given in Section 5. 

A lattice path is a directed path in the Cartesian plane with vertices the 
lattice points (integer pairs) and with steps (directed edges) of the form ((x, 
y), (x + u, y + v)). There will be various restrictions on (u, v); the set of 
permitted (u> v)'$ is called the step set. A lattice path from (0, 0) to (k, ft) 
which lies strictly above the line y = \xx for 0 < x < k is called a (k, ft, u)-
path. If we restrict to steps of the form ((x, y), (x + j, y + 1)) with weight 
a-j, and if the weight of a path is the product of the weights of its steps, then 
we shall show that A(k9 ft, y) is the sum of the weights of the (k, ft, y)-paths 
for ft > \ik. 

FIGURE 1 
A(3, 4, 1) counts the (3, 4, l)-paths with step set {(j, 1) : j e. 1} 
and a3- = 1 for j e I. [,4(3, 4, 1) = (7(3, 4, 1) = y3 of Example 2B). ] 

2. Examples of Recurrences and Their Solutions, the Catalan Arrays 

The recurrences are defined by their initial series. A(k, ft, 0) and a 
A(k, k + 1, 1) (often in [25]) are found from (1.4) and (1.5). For reference 
b(x), o(x), etc., B(k, ft, y), C(k, ft, y), etc., and 3> y, etc. denote the spe-
cific a(x), i4(fe, ft, y), and a. Here "PA," "CA," and "CN" abbreviate Pascal's 
array, Catalan's array (see [21], [24]) and the Catalan numbers [11]: 1, 1, 2, 
5, 14, 42, ... . These examples are unnecessary for Sections 3 and 4. 

Example 2A: b(x) = 1 + x. B(k, ft, 0) = (?) , PA, where, for n e Z and k e fflf, 

(̂ ) = (w)(n - 1) ... (ft - fe + l)/k\ if fc > 0 and (̂ ) = 1. 

B(k, ft, 1) = P " * ) , another PA, and 3k = 1 for -fe > 0. 

B(k, n, 2) = n ~ 2 {^\9 CA (see Table 1). 

[xk]Q(x; 2) = B(k, 2k+l9 2)= , * i^k * l\, CN (marked + in Table 1). 

3(a:; 2) = 1 + ^32(^; 2) by (1.9). The step set {(0, 1), (1, 1)} yields (^) as 
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the number of (k, n, 0 ) - p a t h s . 

n\k 

5 
4 
3 
2 
1 
0 
-1 
-2 

A 

0 

1 
1 
1 
1 
1<-
1 
1 
1 

1 

3 
2 
1+ 
0 
-1 
-2 
-3 
-4 

2 

2+ 
0 
-1 
-1 
0 
2 
5 
9 

TABLE 1 
section of B(k, 

3 

-2 
-2 
-1 
0 
0 
-2 
-7 
-16 

n, 2) 

4 

-3 
-1 
0 
0 
0 
2 
9 
25 

n\k 

5 
4 
3 
2 
1 
0 
-1 
-2 

A 

0 

1 
1 
1 
1 
1+ 
1 
1 
1 

1 

4 
3 
2 
1<-
0 
-1 
-2 
-3 

2 

9 
5 
2+ 
0 
-1 
-1 
0 
2 

TABLE 2 
section of C(fc, 

3 

14 
5+ 
0 
-2 
-2 
-1 
0 
0 

n, 1) 

4 

14+ 
0 
-5 
-5 
-3 
-1 
0 
0 

Example 2B: c(x) = £ x^ = (1 - #) x . 
fc >o 

C(fc, « , 0) = (n + £ " l), PA. 

C(fc, n, 1 ) , CA, are the b a l l o t numbers [ 3 ] , [ 16 ] , see Table 2, 
1 l2k\ 

^v = 
k k + 

— ( J/)5CN (marked <- in Table 2). 

xy2(x) - y(x) + 1 = 0 by (1.9). C(k, n, 0) counts the (fe, n, 0)-paths with step 
set {(0, 1), (1, 0)} with (0, 1) as the initial step. C(k, n, 0) also counts 
the (fc, n, 0)-paths with step set {(j, 1) : j £ I}; see Figure 1. 

Example 2C: b(x) = I + xv = b(xv), where v € I, v > 0. 

5(fe, n, 0) = ( „) if fc = vZ and = 0 otherwise, a variant PA. 

£/-7 - I N n - k/n\ n - vK/n\ „/7Z x .̂  7, B(k, n, 1) = - ^ - ( x ) = — — ( J = BU. »• v) if fc vZ and 
0 otherwise. 

Example 2D: c(x) = I + xz. 

C{k, n, 0) = (T,/9) r o r ^ even and = 0 otherwise, a variant PA. 

"Yfe
 =

 k I i(W) = 1? °' l5 °' 2' "" z e r ° - i n t e r s P e r s e d CN" 
Example 2E: c(x) = 1 + 2x + x 2 . 

£(&, n, 0) = ( / * ) , a PA with every other row missing. 

C(k, n, 1) = B{k, 2n, 2). 

Y k 
1 /2/C + 2 \ 

(fc, 2k + 2, 2) = T——r( , ), CN with first entry missing. 

Note that [xk]y(x) = [xk]$2(x; 2) = [xk}x~l (3(x; 2) - 1) . 

Example 2F: m(x) = I + x + x2. 
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M(k, n, 0) = [x*](l - *3)(1 - x)~l = E (-DJ'n)(n + l- l ) -

M(k, n9 0) = [xk]((l + x2) + x)n = E (*)(̂ ')-

yk = M(fc, /c + 1, 1) = 1, 1, 2, 4, 9, 21, . .., named for Motzkin [17], who found 
them to count the ways of placing nonintersecting cords between k points on a 
circle. Note 

j £0 

and 

-[xk]((l + x + x2) + x ) k + 1 = 7 — ^ - £ (fe t 1)[a:J'-1](l + x + a;2)'' 
A. K T I K -1- 1 

J 

= E L- _ i)Vi-
See Example 7A and [4], [5], and [14]. 

3. Lattice Path Analysis for Propositions 1 and 2 

We use weighted paths with steps of the form ((x, y), (x + j, y + 1)), de-
noted by <j> and assigned the weight a-j, j > 0. <Ji:n> denotes an arbitrary 
path <Ji><J2> ••• <Jn> an<^ Oi = i aji denotes its weight. P(k9 n9 y) denotes the 
set of all (k9 n9 y)-paths and \P(k9 n , y) | denotes the sum of the weights of 
the paths in P{k9 n9 y). When appropriate, |v4| denotes the cardinality of A, 

Since all (k, n, y)-paths pass through { (fc - j, n - 1) : 0 < j < fe} exactly 
once, 

|P(fe., n, y) | = E O ^ 
<Jl:«>eP(fe,n, y) £ = i «7i 

^ ^ w- 1 

E aj lp(k • J» n - 1, y) | 
0 < j < k 

\P(09 0, y) | = 1 and \P(k9 ]ik9 y) | = 0. Hence, \P(k9 n9 y) | satisfies (1.1), 
(1.2), and (1.3) for n > ufc. Thus, 

Proposition 6: \P(k9 n, y) | = i4(n, fc) for n > ufc. (3.1) 

We next determine \P(k9 n, y ) | by a "radiation" scheme, which extends the 
method used by Dvoretzky and Motzkin [7] on Barbierfs ballot problem of 
counting the (k9 n9 y)-paths with a two element step set. Grossman [13], [16] 
reformulated their technique as "penetrating analysis." See also [18]. 

Each path <Ji-.n> € P(k9 n9 0) determines a sequence of cyclic permutations, 
each being a path in P{k9 n9 0): 

<c/l:n>» <J2:1> = <J2><J3> ••• <jV<Jl>> < J 3 : 2 > = < J 3 > < j\> " °  <Jl><J2>' 

--.. <Jn:n-l> = < J n > < J l > •'• < j\z - 2 > < J n-1 > • 0-2) 
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Le t p be t h e p e r i o d of < j ' i : n > . [ < j 1 : „ > ] d e n o t e s t h e c y c l i c p e r m u t a t i o n 
c l a s s { < J i : n > , < J 2 : i > » - . . , < i p : p - 1 > } 5 t h e s e t of d i s t i n c t p a t h s i n ( 3 . 2 ) . 

Le t <Ji:n> be a f i x e d [ f i x e d u n t i l ( 3 . 5 ) ] p a t h i n P(k, n, 0) of p e r i o d p . 
< J l:n> = < J l > < J 2 > •"• <Jp > G P&p/n, p, 0), 

is the initial subpath of <Ji.-n>. Each path in [<j'i:„>] is the concatenation of 
n/p copies of a cyclic permutation of <Ji:p>. Distinguish the steps in <Ji:p^ 
by their index. Thus, each step in <Ji:p> initiates a unique path in [<Ji:n>]. 
A step <j> is called a zero step if j = 0; otherwise it is called positive. Let 
J+ = {{, : j^ > 0 and £ < p}5 the index set of the positive distinguished steps of 
S71: See Figure 2, 

FIGURE 2 

If y = 1 and <Ji:7> = <0X ><02><23><(V <45><06 ><07> (the subscripts-
distinguish the steps), then J+ = {3, 5}. Z3 = {2}, Z5 = {1, 45 7}s 

Z0 = {6}. <Ji:7> and <J*6:5> a r e s n o ™ with 3 sub swaths of rays in-
dicated on <Jg:5>-

In the following n ^ ufe. Fix i e J+ and consider the geometrical configura-
tion of <j£ +1 . ̂ > £ [ <j ]_ . p> ] where each step is a line segment (i + 1 is replaced 
by 1 if i = p). From the points on the last step of <Ji+i:i>> namely <ji>9 draw 
rays in the direction of the ray from (0, 0) through (-1, -y) . See Figure 2. 
Since the terminal vertex of <Ji+\:i> is above or on the line y = \ix9 all rays 
must strike and be absorbed on the right side of <0i+l:iy bY t n e zero steps, 
positive steps being too inclined to be hit. By examining a triangle with 
vertices (05 0), (0, )ij - 1), and (j\ \ij) , we see that the vertical width of 
the swath of rays from <ji > is \iji - 1. This swath can be partitioned 
into \iJ£ - 1 equal parallel subswaths. Since each subswath passes between 

vertically adjacent lattice points, each subswath must irradiate the entire 
interior of a zero step. If Zi denotes the set of indices with respect to <j\:p> 
of the zero steps which are irradiated by the rays from <j^> , then 

\Zi\ = vjt - 1. . (3.3) 

We claim that the Z^, i e J+, are disjoint from one another. Suppose there 
is a zero step that is irradiated by both <ji> and <j^/>, where the zero step 

3.989] 37 



A RECURRENCE RESTRICTED BY A DIAGONAL CONDITION: GENERALIZED CATALAN ARRAYS 

appears earlier in, say, <j^/ + ]_ : ̂  > . But the configuration of <j£' + l:i'> shows 
that the step <ji> will shield this zero step from the irradiation of <j^r >. 

Let Z0 be the index set of clean (nonirradiated) zero steps in < J i:p >. By 
considering the vertical and the horizontal dimensions of <j\:p>, 

v = E \zi\ + M + \Zc\ 
and i£J+ 

vkp/n = u £ j\ = X (^ - 1) + k+| = E lz. 

and thus, 
, . _ p(n - ufe) 

(3.4) 

As noted, each path in [<Ji:n
>] is uniquely determined by its initial step 

which is a distinguished step of <Ji:p>. A path beginning with a positive step 
touches or is below y = \ix by the first step. A path beginning with a zero 
step touches y = \ix for the first time on its radiating positive step. Thus, 
the paths beginning with a clean zero step are precisely those belonging to 
P(k, n, y ) . By (3.4), we have 

Lemma: The number of paths in [<ji:n>] n P(fc, n, y) is 

|2el = = |[<Jl:n>]|. (3.5) 

Since every path in a cyclic permutation class has the same weight and 
since the classes are disjoint with union P(fc, n, 0 ) , 

Yi — y k n 

A(k, n, y) = \P(k, n, y) | = £ — ~ 1 [<Ji:w >1 I .0 a ^ (sum over all 
"̂  = 1 c.p. classes) 

n - \ik %r^ , r . , • JL n - yfc, ,., x | 
= —^-E|t<«7i:„>]| i n i a J - t = — ^ - \ P ( k , n, 0 ) | 

n - ]ik 

n 
A(k9 n, 0). 

Thus, a formula for i4(fc, n, y) has been constructed for n > \xk. Simple arith-
metic shows that this formula satisfies (1.1), (1.2), and (1.3) for n * 0 and 
fe > 0; hence (1.5) is valid. 

A second realization of the contribution of each cyclic permutation class 
to | P(k, n, y ) | establishes (1.6). By (3.3) and (3.5), the weight contributed 
by [<Ji:w>] for n > \ik Is 

\Za\fl ah = £ (1 - ^t)ajt n ai{ + E J [ E ( 1 - ^ ) ^ S II ̂  1 

, /n . . .__ ) (since j\ = j s = 0 for zero steps and 
v Pe;ty J t iVt / since the term in { } is 0) 

V 
= L a - ujt)ajt n ad. t=i i * t 

Summing over all cyclic permutation classes yields 

A(k, n, y) = P(fc, n, y) = . 2^ (1 - yj^a- Jl a. ™fhq^ 
<Ji:n>€^(fc»w, 0) J li = 2 ̂  aJ-l patns; 
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= 22 (1 "" yj)tfj E I ! a j - [ S i n c e a l l p a t h s p a s s t h r o u g h t h e l i n e 
<7^° <J2:n>'i = 2 £/ = 1, t h e second sum i s ove r a l l p a t h s 

from ( j , 1) t o (fe, ft).] 

= 5^ (1 - ]ij)dj\P(k - j , ft - 1, 0) | ( w e i g h t s a r e t r a n s i t i o n i n v a r i a n t ) 
j £ 0 

= E (! " \ij)ajA(k - j , n - 1, 0 ) . 

Thus we have constructed the formula of (1.6) for n > yfe. If i4(fc, ft) momen-
tarily denotes this formula, then it is easily shown that A(k9 ft) satisfies (1-1) 
for (k, ft) G 1" x X. Since i4(fc, ft) and i4(fc, n, y) agree when n > yfc, they agree 
for all (k, ft) e I x 2, yielding (1.6). 

Equation (1.6) yields a nice interpretation for i4(fc, ft, y) on both sides of 
z/ = y# and n > 1. Retaining the definitions of this section, reassign the 
weight of (1 - ]ij)aj to the initial steps ((0, 0), (j, 1)), j > 0. Then A(k, 
n, y) is the sum of the modified weights of all unrestricted paths from (0, 0) 
to (n, k). 

With af(x) denoting the usual formal derivative, immediately (1.6) is equi-
valent to (similar to a result in [1]) 

A(k, ft, y) = [xk](a(x) - wxa1 (x))an~l (x) for n e Z. (3.6) 

4. The Proofs of Propositions 3, 4, and 5 

We establish (1.7), a useful generalized Vandermonde-type convolution [10], 
[16]. Then, using the tractable notation of series, we reformulate both the 
convolution and (1.1) in terms of diagonal series. 

First we give a lattice path proof of (1.7) for m9 n > 0 and m + \xk > \k. 
Since ((x, y) , (x+j\ z/ + l)), j > 0, is the form of the lattice steps, any path 
in P(k, m + n + yfc, A) must intersect the line M = {(j , m + yj) : 0 < j < k}. 
Since the weight of a path is invariant under translation, the sum of the 
weights of the paths from (j, m + yj) to (fc, m + ft + yfc) which remain above M is 
|P(fc - JJ ft + y(fc ~ j) J y)| • Hence the sum of the weights of the paths in P(/c, 
7?2 + ft + yfe, A) that pass through M for a last time at (j, m + yj) is the product 

|P(j, 7?? + yj, A) | |P(fc - J, n + y(fe - j ) , y) | . 

Summing o v e r M and p u t t i n g i4(#, y9 y) = | P ( # , 2/, y) | y i e l d s ( 1 . 7 ) i n t h i s c a s e . 
Now f o r 77? e Z and ft > 0 , ' ( 1 . 7 ) can be p roved by i n d u c t i o n on t h e v a l u e of 

ft + ]ik by o b s e r v i n g t h a t , f o r ft + y i - l < f t + yfc, 

£ aiA(k - i , m + n + \ i i - l + y(fc - i), A) 
i > 0 

= E Z^(j , ^ + ^ '» x ) ^ ^ - i - j> n + vi - 1 + v(k - i - j), y) 
£ > 0 j > 0 

= L 4 ( j , w + y j 5 A) XI a ^ ( / c - j - £, n - 1 +• u(& - j ) , y ) . 
<7 £ 0 £ > 0 

The case for m e Z and ft < 0 can be proved by induction with respect to -ft upon 
noting that (1.1) yields 

A(k> m + (ft - 1) + u&, y) 

= A(k, m + ft + \xk, y) - £ ajA(^ - j \ TT? + (ft - 1 + u j ) + y(fe - j ) , y) 

and t h a t -ft + 1 - y j < -ft. 
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Equivalent to (1.8) is 

a" (a;; y) = X 4(fe, yk + n9 \i)xk f o r n e Z . 

/ c > 0 

For n > 0 , t h i s can be p roved i n d u c t i v e l y s i n c e , by ( 1 . 7 ) , 
an+l(x; y) = a (a:; y ) a " ( x ; y) = X ^ ( k , U& + !> y ) # k X^(fe> y^ + w, y)^ f e 

fc>o fc>o 

= X) ^ ^ ' y/c + rc + 1, ]i)xk
a 

k>0 

The case for n > 0 and (1.7) yields 

c T n ( x ) = a " n ( x ) J] i4(fe , ]ik + n , y ) ^ k XI AU<9 ]±k - n , y ) x ^ 
k>0 fc>0 

= o T n ( x ) a n ( x ) £ 4 ( f c , P^ " « , \i)xk = X! ^(fc» ^ - n> V)xk. 
k>0 k>0 

As in [9], equation (1.8) has the following meaning for n > yfe: Since each 
(k9 ]ik + n9 y)-path must sequentially intersect for a last time each of the lines 
y = ]ix + i for 1 < i < n9 each (k9 ]ik + n, y)-path is an n-fold concatenation of 
(k9 yj + 1, y)-paths for various j. Correspondingly, the total weight of the 
(k9 \ik + n9 y)-paths is a coefficient of an n-fold convolution of a(x; y). 

Moreover, since each (k9 \xk + 1, y)-path intersects the line y = yfc only 
preceding its last step, the set of (k9 \ik + 1, y)-paths is the disjoint union 

k 
P(k9 \ik + 1, y) = U (<Ji: y/<><J> : <Ji: yk> i s a 

J =0 
(k - j, y(fc - j) + yj, y)-path} 

= U ^•<Jl:\ik><^'> l <il:yk> i s a yj-fold concatenation of 
j = o 

various (j, yj + 1, y)-paths}. 
More precisely, we have that 

a ( a ; y) = Z ' 4 ( f c , yk + 1, y ) x ^ 

= X E Ci-x^A{k - j , y(fe - j ) + y j , \i)xk~J' 
fe>0j>0 

E « r r i ^ f t ~ <?> P(fc - J) + vj> ^)^ fc-j 
j > 0 d k>0 

= X a j ^ J a P J ' ( x 5 ^) = X a j ( ^ a y ( ^ 5 y ) ) J -
J > 0 j * 0 

This establishes (1.9) since comparing coefficients shows the uniqueness. 
As a consequence of (1.9), we have 

Proposition 7: For each y e 1, if a(x; y) is taken as the initial series, then 
a(x; y + 1) is the corresponding principal diagonal series. 

Proof: If ct(x) denotes the principal diagonal for a(x; y) , then by (1.9), 

~a(x) = aix'a(x); y) = a(xa(x) [a(x~a(x); y)]y) 

= a(xa(x)[a(x)]V) = a(x[E(x) p + 1) . 

But a(x) must be a (a;; y + 1) by the uniqueness in (1.9). 
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5. A Lagrange Inversion Formula 

A common Lagrange inversion formula [3], [12], is included as it easily 
follows (1.4), (1.5), (1.6), and (1.9). See [3], [8], [9], [12], and [18] for 
more general formulas. 

Proposition 8: For any initial series a(x), there exists a unique series 

ud(x) = ^ ^ji
xk 

such that oo(x) = xa((ti(x)) . Moreover, if f(x) is a formal Laurent series so that 

f(x) = 2 ffrxk f ° r some t <E Z, 
* " I 1 

( [x°]f(x) + [x-l]f'(x)log(a(x)a-l(0)) for n = 0. 
Droof: By (1.9), OJ(^) = xa (x) is the unique solution. It suffices to show the 
second part for f(x) == xk

9 k e X. For ft * 0, 

|>n]0m(a;))fe = [^-k]ak(^) = 4 (ft - fe, ft, 1) = [xn"^]| an0r) 

= ^[xn-l]kxk-lan(x). 

ks noted in [12], 

0 = [x-1]—(xklog(a(x)a-l(0))) 
ax 

= [x-l]kxk-llog(a(x)a~1(0)) + [x~l]xkaf (x)a~l (x). 

For ft = 0, it follows from (3.6) that 

[x°]uk(x) = [x°]xkak(x) = [x~l]ak(x) = 4(-fc, 0, 1) 

= [x~k](l - xaf(x)a~l(x)) = [x~l]kxk~llog(a(x)a-1(0)). 

6. More Examples of Recur rences 

Example 6A: r(x) = 1 + (w + 1) X! xk = (1 + wa?)(l - a;)"1-

i?(fc, ft, 0) = [a?*] X ( ^ V ^ L (n + ) ~ l)x-

fn + i - 1 > 
i >0 

Note how rk r e l a t e s to ak of Sect ion 3 . Also, 
R(k, ft, y) = R(k, n - 1, y) + wi?(fc - 1, ft - 1, y) + i?(fc - 1, ft, y ) , 

and i?(?C, ft, y) is the sum of the weights of the (fc, ft, y)-paths with the step 
set {(0, 1), (1, 1), (1, 0)} where (1,1) has weight w. As shown in [21], [22], 
or from R(k9 ft, 0), we have 

(fc, n, 1) = £ wJ'(n + fe • J' McCfe - s, n - j , 1), 
-? > n x f7 / J ̂ 0 
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For w = 1, s e e Tab le 3 , where 

t h e I ' - S c h r o d e r numbers , a r e marked . See [ 1 9 ] , [ 2 1 ] , and [22] 

pk = 2ok (fc > 0 ) ; 

s e e Example 6E. xp2(x) + (wx - l )p(ar ) + 1 = 0 by ( 1 . 9 ) . 

Note t h a t 

n\k 

4 
3 
2 
1 
0 
-1 

0 

1 
1 
1 
1+ 
1 
1 

1 

6 
4 
2«-
0 
-2 
-4 

2 

16 
6+ 
0 
-2 
0 
6 

3 

22+ 
0 
-6 
-4 
-2 
-8 

4 

0 
-22 
-16 
-6 
0 
10 

n\k 

4 
3 
2 
1 
0 
-1 

0 

1«-

£(fc, 

1 

3 
2 
1«-
0 
-1 
-2 

2 

7 
3+ 
0 
-2 
-3 
-3 

TABLE 4 
n, 1) for 

3 4 

11«- 0 
0 -22 
-6 -28 
-8 -24 
-7 -15 
-4 -5 

w = 1 
TABLE 3 

R(k, n9 1) f o r ZJ = 1 

General Example 6B: Given any sequence y ^ w2» ^3> • • •» c o n s i d e r t h e s t e p s e t 
{ ( 0 , 1 )} u { ( j , 0) : J > 0} where ( 0 , 1) ha s w e i g h t 1 and ( j , 0) has w e i g h t zj-«. 
I f i4(fe, n , y) i s t h e sum of t h e w e i g h t s of t h e (k, n, y ) - p a t h s ( t h e i n i t i a l s t e p 
must be v e r t i c a l ) , we have 

A(k, n, y) = A(k, n - 1 , y) + £ ^ ( f c - J , n , y) . 
j > o 

It follows inductively that this A(k, n, y) satisfies (1.1) for {ak}k>0 defined 
by a0 = 1, ai = Wi, az = W2 + WiWi, a3 = W3 + W2W\ + W ^ + WiWiWi, and in gen-
eral 

E n ^-£l + £2+• • • + £m = & l<t<m 
Hence, 

a(#) Z S * k = 1 + E ( Z ^ V = f1 ~ Z ^arA"1. See [26], 
fc>0 k>1 \i > 1 / ^ i > 1 / 

Example 6C: In Example 6B put W]_ = w2 = 1 and wi = 0 for i > 2. 

a (or) = (1 - # - a:2)-1. 

Thus, afc = 1, 1, 2, 3, 5, ..., the Fibonacci numbers. See 7B. 

Example 6D: In Example 6B put wi = I for i = v and = 0 otherwise. 

c(x) = (1 + ^ v ) _ 1 = e(xv) of (2.2). 

_ J _ / ( v + 1)K\ 
vK + 1 V Z / C(k, k + 1, 1) = C(Z, Zc + 1, v) 

f o r k = vK and = 0 o t h e r w i s e . 

Example 6E: I n Example 6B p u t w^ = w f o r i > 0 : 

s(tf) = 1 + Z (^ + D ^ " 1 ^ = (1 - M E ) ( 1 - (W + D a ; ) " 1 . 
fc >o 
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S{K n, 0) = £ (-l)'V(a, + l)k-H^)(n + \ ~ * ~ l). 
j > 0 X J / V K- ~ 3 I 

When w = 1, see Table 4 for £(fc, n, 1) where ok = S(k, k + 1, 1), the s-Schroder 
numbers [23], are marked; see Example 7B. 

From (w + l)xa2(x) - (1 + wx)o(x) + 1 = 0 [by (1.9)] and the last identity 
of Example 6A, one can show: 

(i) (w + l)(a(x) - 1) = p(x) - 1, 

(ii) (1 + wxp(x)) = (1 - wxo(x))~l, and 

(iii) o(x) = (1 - xp(x))~l. 

These are illustrated in Tables 3 and 4: (i) relates the principal diagonals. 
(ii) and (iii) relate the partial row sums in the triangle above the zeros in 
one array to the principal diagonal in the other, as generalized in the follow-
ing: 

n-l 
Proposition 9: I f tn = J2 un~kA(k, n, 1) = XI v>JA(n- j , n9 1 ) , a w e i g h t e d p a r -

k = o j > o 

tial row sum, then t(x) = ]T tnxn = (1 - wxa(x))~l. 
n>0 

Proof: t(x) = X! S wjA(n - j, n, l)xn = X! ̂ J'^J'X ̂ -(n " j'» n " J + J» l)n"J' 
« > 0 j > 0 j > 0 "^0 

= X W^X^QL3 (x) . 
J> 0 

This extends a result in [20]. 

7. Enumerating Plane Trees 

Informally, a rooted plane tree is an unlabeled tree which is oriented in 
the plane so that it branches upward from a root (a distinguished vertex which 
need not be univalent) to the leaves. Two plane trees are equal if one can be 
continuously transformed into the other in the plane so that the nonroot 
vertices remain above the level of the root. A more formal definition is given 
by Klarner [14] and [16]. A planted plane tree is a plane tree with univalent 
root. See Figure 3. 

Y V Y 
FIGURE 3 

This illustrates the planted plane trees with 4 edges and no 
degree restriction. These trees are listed as they correspond 
to the paths of Figure 1 under Bijection A. The numbers 
indicate the order of growth. 

Here we enumerate rooted plane trees with vertex degree restrictions by 
establishing bijections between the trees and previously counted lattice paths. 
Equivalently, one can establish directly a recurrence for the tree counts in 
the form of (1.1). The following examples are enumerated by other methods in 
[4], [5], [7], [12], [14], [15], [16], and [22]. One common method for planted 

Y 
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plane trees is to establish a functional equation for a generating function and 
then solve the equation perhaps, and not surprisingly, by the Lagrange 
inversion formula as in [12]. 

Bijection A: Counting rooted plane trees with respect to the number of edges 

Let T(n, p) be the set of such trees with n edges and root degree p. Let D 
be a specified set of permitted degrees for the nonroot vertices. Let P(n - p, 
n;D) be the set of (n - p, n9 l)-paths with step set 

{(j, 1) : j + 1 € D}. 

A bijection from P(n - p, n; D) to T(n, p) is defined inductively. The trivial 
zero-length path in P(0, 0; D) corresponds to the tree consisting of just a 
root. A path in P(n - p, n; D) and the corresponding tree in T(n, p) can be 
extended in two ways. (i) The path can be extended to a path in P{n - p, n + 
1; D) by attaching a new step (0, 1), while the corresponding tree is extended 
to a tree in T[n + 1, p + 1) by grafting a new left-most edge to the root. 
Such a new step corresponds to a new leaf. (ii) For j•+ 1 € D and j < p, the 
path can be extended to a path in P{n - p + J* n + 1; D) by attaching the step 
(j, 1) while the corresponding tree is extended to a tree in Tin + 1, p - j + 1) 
by cutting at the root the j left-most incident edges and then grafting the 
lower vertices of these edges to the upper vertex of a new left-most edge 
incident to the root. Thus, a (j , 1) step corresponds to a new vertex of 
degree j + 1. Hence, 

\T(n, p)| = A(n - p, n, 1) = Hxn'H £ xAn. 
n V + 1 e D I 

Bijection B: Counting rooted plane trees with respect to the number of leaves 

Modify the scheme of Bijection A by replacing the underlined phrases sequen-
tially by: n leaves; let D (2 $ D); {(0, 1)} u {(j, 0) : j + 2 e D}; j + 2 e D 
and j < p - 1; P(n - p + j, n; £)•; step (j, 0); T(n, p - j); the j + 1; (j, 0) 
step; degree j + 2. Thus, by Example 6B with w3- = 1 if j + 2 G D and = 0 other-
wise, , 

\T(n, p)| = A(n - p, n, 1) = £[*"-e](l - E a?^)"n. 
n X j + 2 € Z? / • 

Example 7A: Applications of Bijection A 

If D = 1 - {0}, no degree restriction, |T(n, 1) | = C(n - 1, n, 1) = Yn-i5 
see Example 2B and Figure 3. For D = {1, 3}, trivalent planted trees, \T(n9 1)| 
= C(n - 1, n, 1) = Yn-l of 2D. For D = {1, v + 1}, use 2C. For D = {1, 2, 3}, 
no vertex has degree greater than 3, \T(n9 1)| = Mi(n - 1, n, l)=yn-i; see 2F. 

If Z) = 1 - {0, 2}, no bivalent nonroot vertices, let d(x) = (1 - a;)"1 - x. 

\nn, P ) | -£[af»-p]d»(x) = g . i : o ( - i ) " - ^ ) ( 2 \ - _ p ; x ) . 

(J: + 1)6 0 ) = (1 - x6(x))~l by (1.9). One can show 

(x + l)(6(x) - 1) = x(v(x) - 1) (thus, 6n_!+ 6n = yw_L, n > 0). 

Therefore, by Proposition 9, 
n - 1 

fe = 0 
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Hence 

£ \T(n, p) | = yn_ls 

P^ l 

as in [4]. 

Example 7B: Applications of Bijection B 

An immediate source for such trees is the problem [3] of counting the ways 
to bracket n nonassoeiative, noncommutative factors so that the number of fac-
tors associated by a pair of brackets is restricted to some set B. If B = {2}, 
we have the problem of Catalan [2], 1838. There is a simple bisection between 
the usual pairwise bracketings on n factors and the planted plane trees with D 
= {1, 3} and n leaves. For D = {1, 3}, 

\T(n, p)| = p-[xn-p](l - x)~n. 

\T(n, 1)| = yn-i, the appropriately named sequence of Example 2B. 
If B = E - {0, 1}, we have the problem of Schroder [23], 1870. If n = 4, 

the bracketings are 

(a(b(cd)), (a((bc)d)), (a(bcd)), (((ab)c)d), ((a(bc))d), 

((abc)d), ((ab)(cd)), (a(bo)d), (ab(cd)), ((ab)cd), (abed). 

There is a simple bijection between the unrestricted bracketings on n factors 
and the planted trees with n leaves and no bivalent vertices. For D = 1 - {09 

2}, refer to Example 6E with w = 1: 

\T(n, p)| = £(n - p, n, 1) and \T(n9 1)| = an_i» 

If D = {1, v + 2}9 

\T(n, 1)|= C(n - 1, n, 1) = yw-i; 

refer to Example 6D. If D = {1, 3, 4}, refer to Example 6C. 
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