PROPERTIES OF A RECURRING SEQUENCE

A. K. Agarwal

The Pennsylvania State University, Mont Alto, PA 17237 (Submitted June 1986)

1. Introduction

Recurring sequences such as the Fibonacci sequence defined by

$$
\begin{equation*}
F_{0}=0, F_{1}=1 ; F_{n}=F_{n-1}+F_{n-2}, n \geq 2 \tag{1.1}
\end{equation*}
$$

and the Lucas sequence given by

$$
\begin{equation*}
L_{0}=2, L_{1}=1 ; L_{n}=L_{n-1}+L_{n-2}, n \geq 2, \tag{1.2}
\end{equation*}
$$

have been extensively studied because they have many interesting combinatorial properties.

In the present paper, we study the sequence

$$
\left\{L_{2 n+1}\right\}_{n=0}^{\infty},
$$

which obviously satisfies the recurrence relation

$$
\begin{equation*}
L_{1}=1, L_{3}=4,3 L_{2 n+1}-L_{2 n-1}=L_{2 n+3}, \tag{1.3}
\end{equation*}
$$

and is generated by [9, p. 125]

$$
\begin{equation*}
\sum_{k=0}^{n} L_{2 n+1} t^{n}=(1+t)\left(1-3 t+t^{2}\right)^{-1},|t|<1 \tag{1.4}
\end{equation*}
$$

It can be shown that these numbers possess the following interesting property,

$$
\begin{equation*}
\sum_{n=0}^{\infty}(-1)^{n+k}\binom{2 n+1}{n-k} L_{2 k+1}=1 \tag{1.5}
\end{equation*}
$$

for every nonnegative integral value of n, which can be rewritten as

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{(-1)^{k} L_{2 k+1}}{(n-k)!(n+k+1)!}=\frac{(-1)^{n}}{(2 n+1)!} \tag{1.6}
\end{equation*}
$$

In sections 2 and 3 , we study two different q-analogues of $L_{2 n+1}$. In the last section we pose some open problems and make some conjectures. As usual, we shall denote the rising q-factorial by

$$
\begin{equation*}
(a ; q)_{n}=\prod_{i=0}^{\infty} \frac{\left(1-a q^{i}\right)}{\left(1-a q^{n+i}\right)} \tag{1.7}
\end{equation*}
$$

Note that, if n is a positive integer, then

$$
\begin{align*}
& (\alpha ; q)_{n}=(1-\alpha)(1-\alpha q) \ldots\left(1-\alpha q^{n-1}\right) \tag{1.8}\\
& \lim _{n \rightarrow \infty}(\alpha ; q)_{n}=(\alpha ; q)_{\infty}=(1-\alpha)(1-\alpha q)\left(1-\alpha q^{2}\right) \ldots
\end{align*}
$$

and

The Gaussian polynomial $\left[\begin{array}{l}n \\ m\end{array}\right]$ is defined by [4, p. 35]

$$
\left[\begin{array}{l}
n \tag{1.10}\\
m
\end{array}\right]= \begin{cases}(q ; q)_{n} /(q ; q)_{m}(q ; q)_{n-m} & \text { if } 0 \leq m \leq n, \\
0 & \text { otherwise }\end{cases}
$$

2. First q-Analogue of $L_{2 n+1}$

To obtain our first q-analogue of $L_{2 n+1}$, we use the following lemma, due to Andrews [5, Lemma 3, p. 8].

Lemma 2.1: If, for $n \geq 0$,

$$
\begin{equation*}
\beta_{n}=\sum_{k=0}^{n} \frac{\alpha_{k}}{(q ; q)_{n-k}(\alpha q ; q)_{n+k}} \tag{2.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\alpha_{n}=\left(1-\alpha q^{2 n}\right) \sum_{k=0}^{n} \frac{(\alpha q ; q)_{n+k-1}(-1)^{n-k}{ }_{q}\binom{n-k}{2}_{\beta_{k}}}{(q ; q)_{n-k}} \tag{2.2}
\end{equation*}
$$

Multiplying both sides of (2.1) by $(1-q)^{-1}$, with $\alpha=q$ and

$$
\beta_{n}=\frac{(-1)^{n}}{\left(q^{2} ; q\right)_{2 n}}
$$

and using (1.8), we obtain

$$
\begin{equation*}
\frac{(-1)^{n}}{(q ; q)_{2 n+1}}=\sum_{k=0}^{n} \frac{\alpha_{k}}{(q ; q)_{n-k}(q ; q)_{n+k+1}}, n \geq 0 \tag{2.3}
\end{equation*}
$$

which, when compared with (1.6), will give us our first q-analogue of $L_{2 n+1}$ if we let α_{k} play the role of $(-1)^{k} L_{2 k+1}$. Observe that (2.3), by using (1.10), is equivalent to

$$
\sum_{k=0}^{n}(-1)^{n} \alpha_{k}\left[\begin{array}{c}
2 n+1 \tag{2.4}\\
n-k
\end{array}\right]=1, n \geq 0
$$

Letting $\alpha_{k}=C_{k}(q)(-1)^{k}$ in (2.4) and (2.3), we have

$$
\sum_{k=0}^{n}(-1)^{n-k}\left[\begin{array}{c}
2 n+1 \tag{2.5}\\
n-k
\end{array}\right] C_{k}(q)=1, n \geq 0
$$

and, by applying Lemma 2.1 to (2.3),

$$
C_{n}(q)=\sum_{k=0}^{n}\left[\begin{array}{l}
n+k \tag{2.6}\\
n-k
\end{array}\right] \frac{\left(1-q^{2 n+1}\right) q\binom{n-k}{2}}{\left(1-q^{2 k+1}\right)}, n \geq 0
$$

Now we prove the following:
Theorem 2.1: For all $n \geq 0, C_{n}(q)$ is a polynomial.
Proof: Let

$$
\left.D_{n, j}(q)=\left[\begin{array}{l}
n+j \tag{2.7}\\
n-j
\end{array}\right] \frac{1-q^{2 n+1}}{1-q^{2 j+1}} q^{n-j} 2^{2}\right)
$$

Since

$$
C_{n}(q)=\sum_{j=0}^{n} D_{n, j}(q),
$$

it suffices to prove that $D_{n, j}(q)$ is a polynomial. Now

$$
\begin{aligned}
& D_{n, j}(q)=\left[\begin{array}{l}
n+j \\
n-j
\end{array}\right] \frac{\left(1-q^{2 j+1}+q^{2 j+1}-q^{2 n+1}\right)}{\left(1-q^{2 j+1}\right)} q^{(n-j} 2^{(1)} \\
& =\left[\begin{array}{l}
n+j \\
n-j
\end{array}\right]\left(1+\frac{q^{2 j+1}\left(1-q^{2 n-2 j}\right)}{1-q^{2 j+1}}\right) q^{\binom{n-j}{2}} \\
& =\left[\begin{array}{l}
n+j \\
n-j
\end{array}\right] q^{\binom{n-j}{2}}+\frac{(q ; q)_{n+j} q^{2 j+1+\binom{n-j}{2}}\left(1-q^{n-j}\right)\left(1+q^{n-j}\right)}{(q ; q)_{n-j}(q ; q)_{2 j}\left(1-q^{2 j+1}\right)}
\end{aligned}
$$

which is obviously a polynomial.
Theorem 2.2: The coefficient of q^{n} in $C_{\infty}(q)$ equals twice the number of partitions of n into distinct parts.
Proof: $C_{\infty}(q)=\lim _{n \rightarrow \infty} C_{n}(q)=\lim _{n \rightarrow \infty} \sum_{j=0}^{n}\left[\begin{array}{c}2 n-j \\ j\end{array}\right] \frac{\left(1-q^{2 n+1}\right)}{\left(1-q^{2 n-2 j+1}\right)} q^{\binom{j}{2}}$

$$
=\sum_{j=0}^{\infty} \frac{1}{(q ; q)_{j}} q^{\binom{j}{2}} \text {, since it can be shown that }
$$

$$
\lim _{n \rightarrow \infty}\left[\begin{array}{l}
2 n+a \tag{2.8}\\
n+b
\end{array}\right]=\prod_{n=1}^{\infty} \frac{1}{1-q^{n}}
$$

Using the identity [4, Eq. (2.2.6), p. 19], we have

$$
\begin{equation*}
\sum_{j=0}^{\infty} \frac{q^{\binom{j}{2}}}{(q ; q)_{j}}=\prod_{n=0}^{\infty}\left(1+q^{n}\right)=2 \prod_{n=1}^{\infty}\left(1+q^{n}\right) \tag{2.9}
\end{equation*}
$$

Noting that $\prod_{n=1}^{\infty}\left(1+q^{n}\right)$ generates partitions into distinct parts, we are done.
We now note that the numbers

$$
D_{n, n-j}(1)=d_{n, j}
$$

have a combinatorial meaning. However, we first recall the definitions of lattice points and lattice paths.

Definition 2.1: A point whose coordinates are integers is called a lattice point. (Unless otherwise stated, we take these integers to be nonnegative.)

Definition 2.2: By a lattice path (or simply a path), we mean a minimal path via lattice points taking unit horizontal and unit vertical steps.

In Church [2], it is shown that $d_{n, k}(0 \leq k \leq n)$ is the number of lattice paths from $(0,0)$ to $(2 n+1-k, k)$ under the following two conditions:
(1) The paths do not cross $y=x+1$ (or, equivalently, do not have two vertical steps in succession).
(2) The first and last steps cannot both be vertical.

Example: For $n=3$, we have $d_{3,0}=1, d_{3,1}=7, d_{3,2}=14$, and $d_{3,3}=7$.
The values $d_{n, k}$ also appear along the rising diagonals (see [8, p. 486]).
3. Second q-Analogue of $L_{2 n+1}$

The second q-analogue of the numbers $L_{2 n+1}$ is suggested by the q-extension of Fibonacci numbers found in the literature (cf. [3, p. 302; 1, p. 7]).

Equation (1.4) can be writtèn as

$$
\begin{equation*}
\sum_{n=0}^{\infty} L_{2 n+1} t^{n}=(1+t) \sum_{n=0}^{\infty} \frac{t^{n}}{(1-t)^{2 n+2}} \tag{3.1}
\end{equation*}
$$

we have

$$
\sum_{n=0}^{\infty} \bar{C}_{n}(q) t^{n}=(1+t) \sum_{n=0}^{\infty} \sum_{m=0}^{\infty}\left[\begin{array}{c}
2 n+1+m \tag{3.3}\\
m
\end{array}\right] q^{n^{2}} t^{n+m}
$$

by using [4, Eq. (3.3.7), p. 36], which is

$$
(z ; q)_{N}^{-1}=\sum_{j=0}^{\infty}\left[\begin{array}{c}
N+j-1 \tag{3.4}\\
j
\end{array}\right] z^{j}
$$

Equating the coefficients of t^{n} in (3.3), we get

$$
\begin{equation*}
\bar{C}_{n}(q)=\sum_{m=0}^{n} B_{n, m}(q)+\sum_{m=0}^{n-1} B_{n-1, m}(q), \tag{3.5}
\end{equation*}
$$

where

$$
B_{n, m}(q)=q^{(n-m)^{2}}\left[\begin{array}{c}
2 n-m+1 \tag{3.6}\\
m
\end{array}\right]
$$

Since each $B_{n, m}(q)$ is a polynomial, $\bar{C}_{n}(q)$ is also a polynomial for all $n \geq 0$.
Theorem 3.1: Let

$$
\begin{equation*}
\bar{C}_{\infty}(q)=\lim _{t \rightarrow 1}(1-t) \sum_{n=0}^{\infty} \bar{C}_{n}(q) t^{n} \tag{3.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\bar{C}_{\infty}(q)=2\left(P_{1}(q)+q P_{2}(q)\right), \tag{3.8}
\end{equation*}
$$

where $P_{1}(q)$ is an enumerative generating function which generates partitions into parts which are either odd or congruent to 16 or $4(\bmod 20)$, and $P_{2}(q)$ is another enumerative generating function which generates partitions into parts which are either odd or congruent to 12 or $8(\bmod 20)$.

Proof: Starting with the left-hand side of (3.7), we have

$$
\begin{aligned}
\bar{C}_{\infty}(q) & =\lim _{t \rightarrow 1}(1-t) \sum_{n=0}^{\infty} \frac{(1+t) q^{n^{2}} t^{n}}{(t ; q)_{2 n+2}}=2 \sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q ; q)_{2 n+1}} \\
& =2 \sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q ; q)_{2 n}}\left(1+\frac{q^{2 n+1}}{1-q^{2 n+1}}\right) \\
& =2 \sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q ; q)_{2 n}}+2 q \sum_{n=0}^{\infty} \frac{q^{n(n+2)}}{(q ; q)_{2 n+1}} .
\end{aligned}
$$

Now, an appeal to the following two identities found in Slater's compendium [6, I-(74), p. 160; I-(96), p. 162], i.e.,

$$
\begin{align*}
& \prod_{n=1}^{\infty}\left(1-q^{20 n-8}\right)\left(1-q^{20 n-12}\right)\left(1-q^{20 n}\right) \\
& =\prod_{n=1}^{\infty} \frac{\left(1-q^{2 n}\right)}{\left(1+q^{2 n-1}\right)} \sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q ; q)_{2 n}} \tag{3.9}
\end{align*}
$$

and

$$
\begin{align*}
& \prod_{n=1}^{\infty}\left(1-q^{10 n-4}\right)\left(1-q^{10 n-6}\right)\left(1-q^{20 n-18}\right)\left(1-q^{20 n-2}\right)\left(1-q^{10 n}\right) \\
& =\prod_{n=1}^{\infty}\left(1-q^{n}\right) \sum_{n=0}^{\infty} \frac{q^{n(n+2)}}{(q ; q)_{2 n+1}} \tag{3.10}
\end{align*}
$$

proves the theorem.
Next, we define the polynomials $E_{n, m}(q)$ by

$$
E_{n, m}(q)= \begin{cases}B_{n, m}(q)+B_{n-1, m}(q) & \text { if } 0 \leq m \leq n-1 \tag{3.11}\\
{\left[\begin{array}{c}
n+1 \\
n
\end{array}\right]} & \text { if } m=n \\
0 & \text { otherwise }\end{cases}
$$

To give a combinatorial interpretation of the polynomials $B_{n, m}(q)$ and $E_{n, m}(q)$, we consider an integer triangle whose entries $e_{n, k}(n=0,1,2, \ldots ; 0 \leq k \leq n)$ are given by

$$
\begin{equation*}
e_{n, k}=b_{n, k}+b_{n-1, k} \tag{3.12}
\end{equation*}
$$

where $b_{n, k}$ is the $(k+1)^{\text {th }}$ coefficient in the expansion of $(x+y)^{2 n+l-k}$ when $0 \leq k \leq n$, and $b_{n, k}=0$ for $k>n$.

It can be shown that

$$
\sum_{k=0}^{n} b_{n, k}=F_{2 n+2} \quad \text { and } \quad \sum_{k=0}^{n} e_{n, k}=L_{2 n+1}
$$

Note that $E_{n, m}(q)$ and $B_{n, m}(q)$ are q-extensions of the numbers $e_{n, m}$ and $b_{n, m}$ respectively. Moreover, $B_{n, m}(1)=b_{n, m}$ is the number of lattice paths from (1, $0)$ to $(2 n+1-m, m)$ with no two successive vertical steps. Defining $E_{n}(q)$ by

$$
E_{n}(q)=\sum_{k=0}^{n}\left[\begin{array}{l}
2 n+1 \tag{3.13}\\
n-k
\end{array}\right] \bar{C}_{k}(q)(-1)^{n-k}
$$

it is easy to show that $E_{n}(q)$ is a polynomial in q where the sum of the coefficients is equal to unity.

Note also that (2.7) and (3.13) are q-analogues of (1.5). Finally, we set

$$
\begin{equation*}
D_{n}(q)=\sum_{m=0}^{n} B_{n, m}(q), \tag{3.14}
\end{equation*}
$$

and observe that $D_{n}(q)$ is a q-analogue of W_{n+1}, where W_{n} is the weighted composition function with weights 1, 2, ..., n [7, p. 39]; hence, (3.5) leads to the formula

$$
\begin{equation*}
L_{2 n+1}=W_{n+1}+W_{n}, \quad n \geq 1 \tag{3.15}
\end{equation*}
$$

Note that the sum of the coefficients of $D_{n}(q)$ is the Fibonacci number $F_{2 n+2}$. We close this section with the following theorem, which is easy to prove.

Theorem 3.2: Let $\bar{C}_{\infty}(q)$ be defined by (3.7) and $D_{\infty}(q)=\lim _{n \rightarrow \infty} D_{n}(q)$, then

$$
\begin{equation*}
D_{\infty}(q)=\frac{1}{2} \bar{C}_{\infty}(q) \tag{3.16}
\end{equation*}
$$

4. Conclusion

We have given several combinatorial interpretations of the polynomials

$$
C_{n}(q), D_{n, m}(q), \bar{C}_{n}(q), B_{n, m}(q), \text { and } E_{n, m}(q) \text { at } q=1
$$

the most obvious question that arises is: Is it possible to interpret these polynomials as generating functions? We make the following conjectures:

Conjecture 1: In the expansion of $C_{n}(q)$, the coefficient of $q^{k}(k \leq 2 n-2)$ equals twice the number of partitions of k into distinct parts.

Conjecture 2: For $1 \leq k \leq n$, let
$A(k, n)=$ the number of partitions of k into parts
$\not \equiv 0, \pm 2, \pm 6, \pm 8,10(\bmod 20)+$ the number of partitions
of $k-1$ into parts $\not \equiv 0, \pm 2, \pm 4, \pm 6,10(\bmod 20)$.
then the coefficient of q^{k} in the expansion of $D_{n}(q)$ equals $A(k, n)$.
Conjecture 3: In the expansion of $\bar{C}_{n}(q)$, the coefficient of $q^{k}(k \leq n-1)$ equals $2 A(k, n-1)$.

Remark: Theorems 2.2, 3.1, and 3.2 are the limiting cases $n \rightarrow \infty$ of Conjectures 1,3 , and 2 respectively.

We hope that some interested readers can prove Conjectures 1, 2, and 3.

Acknowledgment

I wish to thank the referee for his many helpful suggestions.

References

1. A. K. Agarwal \& G. E. Andrews. "Hook Differences and Lattice Paths." J. Statist. Plann. Inference 14 (1986):5-14.
2. C. A. Church, Jr. "Lattice Paths and Fibonacci and Lucas Numbers." Eibonacci Quarterly 12.4 (1974):336-338.
3. G. E. Andrews. "A Polynomial Identity which Implies the Rogers-Ramanujan Identities." Scripta Math. 28 (1970):297-305.
4. G. E. Andrews. The Theory of Partitions, Encyclopedia of Mathematics and Its Applications. New York: Addison-Wesley, 1976.
5. G. E. Andrews. "Connection Coefficient Problems and Partitions, Relations between Combinatorics and Other Parts of Mathematics." D. K. Ray Chaudhuri, ed. Proc. Symp. Pure Math. 34 (1979):1-24.
6. L. J. Slater. "Further Identities of the Rogers-Ramanujan Type. Proc. London Math. Soc. 54.2 (1952):147-167.
7. L. Moser \& E. L. Whitney. "Weighted Compositions." Canadian Math. Bull. 4 (1961):39-43.
8. Mark Feinberg. "Lucas Triangle." Fibonacci Quarterly 5 (1967):486-490.
9. V. E. Hoggatt, Jr. "Some Special Fibonacci and Lucas Generating Functions." Fibonacci Quarterly 9.2 (1971):121-133.
