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A rational number r is said to be divisible by a prime number p provided 
the numerator of r is divisible by p . Here it is assumed that all rational 
numbers are written in standard form. That is, the numerators and denominators 
are relatively prime integers and the denominators are positive. 

Certain sequences {un}™=1 of rational numbers have the property that if p 
is any prime number, then up = u-, (mod p) . A sequence {un}™=i having this pro-
perty is said to be a Fermat sequence or to possess the Fermat property. 

The obvious example of a sequence that has the Fermat property is {an}^= 1 

with a being an integer. Indeed Fermat?s Little Theorem states that if a is 
any integer and if p is a prime number, then ap = a (mod p) . 

There are sequences {un}™=1 that have the Fermat property other than 
{an}™=1. An example of a sequence that has the Fermat property for odd primes 
is the sequence {Tn(x)}™=1 where x is an integer and Tn(x) is a Tchebycheff 
polynomial of the first kind. 

It is the purpose of this paper to give a class of sequences (of rational 
numbers) all having the Fermat property. The following theorem is related to 
Newtonfs formulas. Let 

f(x) = xk + A^"1 + . . . + Ak_Yx + Ak 

be a polynomial with real or complex coefficients. The sequence {un}™=1 is de-
fined in the following way: The first k terms of the sequence are given by New-
ton's formulas, namely, 

ul + Al = °> 
u2 + &\u\ + 2i42 = 0, 

u3 + Alu1 + A2ul + 3A3 = 0, (1) 

uk + &i'uk_l + A2uk_2 + . . . + Ak_lul + kAk = 0 . 
After the initial k terms are given, the rest of the terms are generated by the 
difference equation 

un + Alun_l + Azun_2 + ... + Akun_k = 0, (2) 

for n > k + 1, which is formed from the polynomial f(x). It is well known that 
the sequence {un}^=1 given above is the sequence of the sum of the powers of 
the roots of f(x). Thus, if 

fix) = (x - xx)(x - x2) ... (x - xk) 9 
then 

un = x^ + x2 + • • • + xk, for n = 1, 2, 3, ... . 

In this paper it is supposed that x^x2 ... xk * 0. See [6], pages 260-262. 
The Corollary to Theorem 1 solves the difference equation defined by (1) 

and (2) with appropriate adjustments in the way f(x) is factored. 
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Theorem 1: Let ol9 o^y . .., ak and x^, x^9 . .., xk be any real or complex num-
bers. Let 

Then 

II (1 + x^xf* = 1 + L A^ 

Cs -I J j -I ~t~ C* rsX r\ T • • • "t~ G -uX n. 

(3) 

(4) 

XM-n^ E (» - ' ' iK-*- ' ' E (^V 
J'i = 0 c72 = 0 \ ^ 2 / J3 = 0 W 3 / 

J n _ 2 

E 
^ ' n - l = 0 

' - 2 
V (Jn-2\/\ 3n-2-jn-i( On-l \/\0n-i-{0\ 

J. 
"Jn- l) A 3\ J2 ~ On- 1 

where n is a natural number. 

Proof: The argument is formal. Take In x of both sides of (3). Then, for the 
left side, 

k k 
In n (1 + x^Y* = E °i ln(l + * ; * ) • 

t = 1 i = 1 

The expansion 

(4) 

(5) ln(l + ^ ) = ^ - ^ r - + ̂ ~ - + . . . + ^JH. *1 + . . . , 
2 3 n 

\x\ < 1 is well known. 
Let Coexr f(x) denote the coefficient of xr when f(x) is expanded as a power 

series in x. Then 

k k c.(-l)n-lx? 
Coea.n £ ci l n ( ! + xix) = £ (6) 

i = 1 

n 

To find the coefficient of xn on the right side of (3) after In x is taken, 
the following argument is given. Since the coefficient of xn is to be deter-
mined, it follows that only 

In (l + t/i^) 
need be considered. Thus, the required coefficient is 

Coe^lnfl +T,AixA 
n . / JL A 2 

(7) 

Coexn + -

/ n \n~ 

n - J 

Since each term in this expansion has x as a factor, it is not necessary to 
consider terms for which n - j >• n. Thus, n - j < n so that j > 0. Also, the 

110 [May 



A GENERALIZATION OF FERMAT'S LITTLE THEOREM 

only ones that are needed to be considered are those which do have some term 
with xn in its expansion. Now each term that has xn in its expansion satisfies 
ft (ft - J) ̂  ft or n - j > 1 or n - 1 > j. Thus, the largest value for j needed 
is n - 1. Hence, / n , 

Coexnln(l + L ^ M = Coe^ £ : W 
\ i = i / j \ = o ft - j i 

- £ 
n - 1 ( - l ^ ^ C o e ^ ^ + t ^ ^ " 1 ) ' " ' 1 

j ^ o ft - J i 

n - l 

= E 
(-l)»-rfi-lCoexrfl j f ( " J V ' 1 ) ^ " ' 1 " ' 2 ! ^ ^ " 1 ) 1 

J , - O " - J l 

».i (-i)n~JW % (n jV^r^^coe^,-, , (A2 + £3^**-2y 
E 

Continuing this pattern with a simple induction completes the proof. • 

An important special case of Theorem 1 occurs when c^ = e2 = • • • = cfe = 1-
In this case, in (7), 

Coe^lnfl + E ^ x M = Coe^lnU + E 0 ^ ) ' (9> 

where a,, a~, • ••> ofc are the elementary symmetric functions of x-^, x^, . . . , x^. 
Thus, 

O n • X -j "t" i U Q "i • • • "T" «X/ ir , 

+ • • . + xk--iXk, . . . , crk 

The only terms in the expansion (9) that need be considered are those which 
actually do have some term with xn in its expansion. Now each term which has 
xn in its expansion satisfies kin - j) > n, or (k - l)ft > kj, [see line (8)]. 
Let hfrin) be the largest whole number t such that (k - l)ft > kt* Thus, 0 < j < 
hk(n), With this change, the following is a corollary to Theorem 1. 

Corollary to Theorem 1: Let n be a natural number and let a^, x2, . .., ^ be a 
set of real or complex numbers. 

Then, nhf (-Dil £ (" ; ̂ Vr'1"'2 E (^W^ ••• 

«X/ I l~ X r\ ~> • • • T" *Aj -i 

ft - Jl 

JE2 (^W^-^f-- >-* _7- V 
j" ^oWfe-l/ * Z W l <?2 ' e °  «?fc-l/ 

l g ^ - 1 (*?1 <?2 " • Jfc-l) g ^1 <?2 ' " <?fc-] 

(10) 
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where o^9 c ^ , •••> °k a r e t ^ i e elementary symmetric functions of x->, x2, • . • 9 x, 
and hk(n) is the largest whole number t such that (k - l)n > kt. 

Using (10), with appropriate simplifications for k = 2 and fc = 3, gives: 

mm , (n ;..J') 
xl + x\ = n £ (-1)-7 v

w * / ( g l + x^-^-i {xxx2y , (11) 
and 

x^ + x£ + x\ (12) 

/ ^ 0 £ = [ ( j + l ) / 2 ] V l ,XJ l } n 
a • 

n - j 
/ ryt ry* _|_ /y» /y» _l_ ry* ry% \ •*-.*' <J ( ry\ rv* rf» | (/ Ki • 
\*Aj -\ tAj r\ I tXr r\ %AJ Q I tAj QtA/ -| y y î/O -i %KJ r\%Aj Q y 

where [ ] is the greatest integer function. 

The identity (11) is known. It is reported on in [2], p. 80, in the 
article on G. Candidofs use of this identity. 

For a discussion of formal arguments, see [3]. 

Theorem 1 can now be used to establish 

Theorem 2: Let cl5 c2> • ••> ok and x\9 x2> • ••> xk be any real or complex num-
bers and if the coefficients A^9 A2, A^, ... in 

n (1 + x.xf1 = 1 + f; A^X1 

are all rational numbers, then: 

(1) The sequence {un}™=1, un = c^" + c2x2 + ... + ckx£9 is a sequence of 
rational numbers; and 

(2) If for any prime number p, p is relatively prime to each of the denom-
inators of Al9 A2> . .., Ap, then the sequence {un}™=1 has the Fermat property. 

Proof: From Theorem 1, it is clear that un is a rational number if A19 A2> ..., 
An are all rationals. Also, if p is a prime number, from Theorem 1 and the 
fact that the denominators of Al9 A2, ..., Ap are all relatively prime to p, up 
E u-^imod p) . Here, ul = A^. Q 

L. E. Dickson established a result somewhat reminiscent of Theorem 2. He 
showed that if Zn is the sum of the nth powers of the roots of the polynomial 

xm + a^™'1 + .. • + ak = 0, 

where ai = 0 and a\9 a29 ..., ak are all integers, then Zp E 0 (mod p) when p 
is a prime. See [1]. This result is of course a corollary of Theorem 2. 

Example 1: For the Tchebycheff polynomials it is known that 

2Tn(x) = (x + /^2 _ if + (X - /x2 - l) n . 

(See [5], p. 5.) Letting 

and 
yl=x + T/X2-
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y2 = x - Jx2- - 1 
and 

(1 + yxy)(l + y2y) = 1 + 2xy + y z 

so that, by Theorem 2, for x an integer {2Tn(x)}™=1 is a Fermat sequence. Thus, 
if p is a prime number 2Tp(x) E 2a? (mod p) . Hence, if p > 2, {T (x^Z=i n a s t n e 

Fermat property. 
It is possible to give examples of sequences {u }"=1 in (1) of Theorem 2 

where the c?s are irrational or even complex. However, if the x fs are irra-
tional, then it is not obvious that un E u, (mod p) for p being a prime number. 
The position taken here is that no irrational number is divisible by any prime 
number. The arithmetic of this paper is the arithmetic of the real rational 
integers. Thus, 

^ 2 ) * 2 ^ P^3 

but as Theorem 2 shows 

\—2—) +\—T-) =—T- + ~r~(modp)' 
Thus, for x^9 %2> *eo? xk9 t n e r o o t s ° f a polynomial over the rationals 

x? + x? + ... + xg E xl + x2 + ... + #k (mod p) 

is a generalization of Fermat!s Little Theorem. 
From Theorem 1 it is clear that if the uTs are all rational numbers, then 

all the A ? s in Theorem 2 are also rational. Thus, the following corollary is 
established. 

Corollary to Theorem 2: Let c^, o2, . . . , ck and a:1 , x2 , . . . , xk be any real or 
complex numbers. Then a necessary and sufficient condition for the coefficients 
1' •"• 9 ' -̂  Q ' ... m 

n (1 + ay*)"* = 1 + E 4.a?S (13> 

to be rational numbers is for the sequence 
n^n = l s ^"n = ^1*^1 "̂" ̂ 2*^2 ~̂" * * * ~̂" ^kXk 

to be a sequence of rationals. 

Example 3: Let a and 2? be rationals and suppose that b is not the square of a 
rational. Consider the power series 

(1 + (a + >/b)x)a-^(l + (a - /£)x) a + /£ = 1 + E ^ar*. (14> 

i = l 

By the corollary, the power series will have rational coefficients provided 

un = (a + /b)(a - /b)n + (a - /b) (a + ^ ) \ 

is rational for n = 1, 2, 3, ... . Now 
un = (a2 - fc)[(a - /M*"1 + (a + v^)""1] (15) 

n-l 

i-0 

which is clearly rational. 
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For example , 

(1 + 0)X)W2(1 + 032X)W = 1 + E &ixi> 
i = l 

(16) 

is such that Ai is rational for i = 1, 2? 3, ... when 1, co, a)2 are the cube 
roots of unity. 

Example 4: Define the sequence {un}™=1 by the formula 

*n = £ -.2n 

J = l 

2j - 1 
km 

Here 777 is an arbitrary natural number. Then {wn}n = 1 is a sequence of integers 
which has the Fermat property. 

To see this, consider the product 

ny). £(, _ [..^i.],). 
™ 2j - 1 

M u l t i p l y t h i s by fj c o s 2 ; TT so t h a t 
J = I 

m 2 j - 1 
/ Q / ) 11 c o s ^ — ; •"" 

j = 1 477? 

4/7? 

n(co 0 2 j - 1 
S Z 7J _ ^ 

477? ^ 

Rep l ace 2/ by x 2 so t h a t 

, 2 j " f(x2) n cos2-
j = 1 477? 

(~ l ) m I I c o s 2 : TT 

1 m I 
-TT = f ] ICO 

9 2 j - 1 2 , 
4TT? 

J - l 477? fix2) 
2 j - 1 \( ^ 2 j - 1 x - cos TfUx + cos : TT 

477? 4777 

(17) 

(18) 

(19) 

(20) 

T h i n k i n g of c o s [ ( 2 j - l)/477?]n a l o n g t h e u n i t c i r c l e f o r j = 1 , 2 , . . . , m, i t i s 
i n t h e f i r s t q u a d r a n t so t h a t , by symmetry, 

' lV77 ft 9 2 j - 1 " 

(-1) n cos2—; 7T 

A well-known identity is 

fix2) 
2m I 

= Til 

a:277 + 1 n (* 2 - 2x cos 2 j - 1 
In 

x - cos 

TT + l j . 

2 j " 1 
4TT? • ) • 

I n ( 2 2 ) , l e t n = 2m and # = £ so t h a t 

„ 2m 2 7 - 1 
2 = ( - l ) m 2 2 w n c o s 2 — IT. 

J = 1 477? 

Now, by symmetry around the unit circle, 

2m 

n c°s 2m 2 7 - 1 m m . . 27 - 1 ( - 1 ) 

J = l 477? J = l 477? )2m-l 

(21) 

(22) 

(23) 

(24) 
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Using (24) and (21) y i e l d s 

f(x2) = ( - . 1 ) ^ 2 2 O T ~ 1 fi(x - cos 2 J " lir). (25) 
i = i \ 4/7? ' 

I t i s w e l l known t h a t 

2w / 27 - 1 \ 
T0 (x) = l2771'1 U\x - cos — TTK 

Z m j = i \ 4??7 / 

where T2m(x) i s t h e 2777th Tchebychef f p o l y n o m i a l ( s e e [ 4 ] , p p . 8 6 - 9 0 ) . T h i s 
f o l l o w s from t h e f a c t t h a t Tn (x) = c o s ( n a r c c o s x). Now x ~ fy, so t h a t 

f(y) = (-DmT2m(^), (26) 
which is a polynomial in y with integer coefficients. 

Since sec2 [ (2j - 1) I km\ ir for j = 15 2, 3, . .., 777 are the roots of 

(-iry
mT2ma/Jy) 

and the coefficients of this polynomial are all integers and the leading coef-
ficient is (~l)m, it follows from the corollary to Theorem 2 that {un}™=1 is a 
sequence of integers satisfying the Fermat property. 
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