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1. Introduction 

Harlan Stevens [8] introduced the following generalization of the Euler (p-
f unction. Let F - {f\(x)9 . . . , ~fk (x)}, k > 1, be a set of polynomials with 
integral coefficients and let A represent the set of all ordered fc-tuples of 
integers (a-,, . .., a^) such that 0 < a-,, . .., a^ < n. Then <PF(n) is the num-
ber of elements in A such that the g.c.d. (/̂ (a-̂ , . .., fk(ak^ = 1- We have, 
for n = IIP - veo , 

r I Nl, ... Nkl-\ <PF(n) = n ^ n 1 - -^ ^ 
j = i V v% i 

where N^j is the number of incongruent solutions of f^(x) E 0 (mod p.), see [8, 
Theorem 1]. 

This totient function is multiplicative and it is very general. As special 
cases, we obtain Jordan1s well-known totient J^(n) [3, p. 147] for f\(x) = ••• 
= f-k^x) ~ xl t n e Euler totient function <p(n) E Ji(n); Schemmelfs function (J>t(n) 
[7] for k = 1 and f\(x) = x(x + 1 ) ... (x + t - 1), t > 1; also the totients 
investigated by Nagell [5], Alder [1], and others (cf. [8]). 

The aim of this paper is to establish an asymptotic formula for the summa-
tory function of <PF(n) using elementary arguments and preserving the general-
ity. We shall assume that each polynomial f^ (x) has relatively prime coeffi-
cients, that is, for each 

fi(x) = aiVi xri + aiT. „ixri~l + ... + ai0 

the g.c.d. (aiTj , aiVi _l5 . . . , ai0) = 1. 

2. P re requ i s i t e s 

We need the following result stated by Stevens [8]. 

Lemma 1: 
<PF(n) = £ M(d)QF(d)(^f, (1) 

d\n 

where u is the Mobius function and QF(n) is a completely multiplicative function 
defined as follows: fiF(l) = 1 and, for 1 < n = II* , pej , 

M w > = fl (Nu ... ffkj.)*' • 
3 = 1 

Under the assumption mentioned in the Introduction, we now prove 

Lemma 2: 

|u(n)ftF(n)| = 0(nE) for all positive e. (2) 
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< (Mk)r. 

Proof: Suppose t h e cong ruence 

fi (x) = a^P. xri + aiv_ -ixTi~l + . • - + a^o E 0 (mod p . ) 
i i J 

is of degree s^j , 0 < s^j < z^ 5 where 

aiSij t 0 (mod P j . ) . 

Then, as is well known (by Lagrange*s theorem), the congruence 

ft (x) = 0 (mod p. ) 

has at most s^j incongruent roots, where S^J < v^ for all primes p.; therefore, 
N;j < v- for all primes p. and N;J < 2 + max z>- = M9 M > 1, for all i and j . 

J ^ r J ^ 1 <-£<£: 
Now, f o r n = H-1pej , \ ]i (n) Q F (n) \ = 0 i f j e x i s t s such t h a t ^ > 2 ; o t h e r -

w i s e , 
| y ( n ) f l F ( n ) | = ( - l ) r - 0 O h j . . . ^ j ) 

I J = 1 

Hence, \ \i (n) tt F (n) \ < A^(n) for all n, where A = Mk > 1. 

On the other hand, one has 

2w(n) = 2r < fi (^ + 1) = d(n), 
,7 = 1 

so oa(n) < log2^45 which i m p l i e s 

| y (w) f i F (w) | < Alo*2dM. 

Further, it is known that d(n) = 0(na) for all a > 0 (see [4, Theorem 315]). By 
choosing a = e/log2^ > 0, we obtain |u(n)ftF(n)| = 0(nE), as desired. 

Lemma 3: The series 

» \i(n)QF(n) 

„=i ns+l 

n(.-^i). w 
is absolutely convergent for s > 0, and its sum is given by 

Ms) 
p. 

where N^ denotes the number of incongruent solutions of f^ (x) = 0 (mod p). 

Proof: The absolute convergence follows by Lemma 2: 

|u(n)ftF(n)/ns+1| < K • l/ns + 1 _ e, 

where Z > 0 is a constant and e > 0 is such that s - e > 0. Note that the gen-
eral term is multiplicative in n, so the series can be expanded into an infi-
nite Euler-type product [3, 17.4]: 

« u(n)fiF(w) / • y(p^)^F(p£)\ / M P ) \ _ , 
L, = || I 2^ r- 1 = 11 I 1 ~i J ~ AF-

From here on, we shall use the following well-known estimates. 

Lemma 4: 

£ ns = ^ + 0(xs), s > 1; (4) 
n < cc S + 1 ' 
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E A = 0(xl-s), 0 < s < 1; (5) 
n < x Yl 

n> x Yl \X I 
(6) 

3. Main Results 

Theorem 1: 
A (k)xk + ̂ ~ 

£ <PF(n) - \ ^ 1 + 0(Rk(x)), (7) 
n < x K + L 

where Rk(x) = xk or x^ + e (for a l l e > 0) according as k > 2 or k - 1. 

Proof: Using (1) and (4), one has 

E <PF(n) = E u(d)M<«S* = £ u(d)flF(i) £ «* 
n<o: d^-n<x d<x 5<x/d 

£ S F W P W ) ^ ' 0r/ i) f e + 1 + 0((a:/d)*)i ;<x (/c + 1 j 
xfc+1 » y(d)nf(d) / k+1 \u(d)QF(d)\\ 

/ . _ |y(d)fi f(d) | \ 
\ A <x 

Here the main term is 

XF(k)xk+l 

k + 1 

by (3); then, in view of (2) and (6), the first remainder term becomes 

0[xk + l • E -^7TT) =o(xk + l . E 7frii-P^ = ̂ U 1 + e) (choosing 0 < e < 1), >(^ + 1 • £ J ^ j = o(x* + l ̂  5*^7) = ̂ U1 + £) (choosing 0 

;econd remainder term, (2) implie For the second remainder term, (2) implies 

o( 

which is 

0(xk) for k > 2, and 0(x'Xl~1 + e) = ̂ (^r1 + e) for fc = 1 [by (5)]. 

This completes the proof of the theorem. 

For fi(x) = • •• = fk(x) = x, we have il/̂j = 1 for all i and j; thus, ^(n) = 
^ in) - the Jordan totient function. This yields 

Corollary 1 (cf. [2, (3.7) and (3.8)]): 

,?/*( n ) = (fe + iK<fc + i) + 0{xk)-k * 2 ; ( 8 ) 

£ ?(«) = T—7T + ̂ (^1 + £ ) , fc = 1, for all e > 0, (9) 

where C(s) is the Riemann zeta function. 
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Remark: The 0~term of (9) can e a s i l y be improved in to 0{x log x) , see Mertens ' 
formula [4, Theorem 330] . 

By s e l e c t i n g k = 1 and fi(x) = x(x + 1 ) . . . . (x + t - 1 ) , t > 1, we get 

V-piri) - §t(n) - Schenimel's t o t i e n t function [ 7 ] , 

for which 21/]_ = p i f p < t , and #]_ = t i f p > £. Using Theorem 1, we conclude 

Corollary 2: 

E Mn> = IT II (l " i) * II (l ~ \ ) + 0(xl + £) for all e > 0. (10) 

For t = 2, §2(n) = <Pr(n)s see [6, p. 37, Ex. 20], and we have 

Corollary 3: 

E <P'(n) = ̂ - • II (l - - V W ^(^ 1 + e) for all e > 0. (11) 
n < x 2 V \ PZ/ 

Choosing fc = 1 and f\(x) - x(\ - x), we obtain 

(pAn) = 6(A, n) - Nagellfs totient function [5], 

where iFj = 1 or 2, according as p|x or p|A, and we have 

CoroHary 4: 

E 6(X, n) = 4- * n (l - -V) • II (l - 4 ) + ̂ (^1 + £) for a11 e > 0. (12) 
n < x * p \ x ^ V j p \ \ X V I 

Now, let f\(x) = • •• = fk (x) = x2 + 1, /V̂  = 1, 2, or 0, according as p = 2, 
p E 1 (mod 4), or p = 3 (mod 4), see [8, Ex. 4]. In this case, we have 

Corollary 5: 

£ ^(n) = FTT!1 - ̂ i) • ^ . i 1 - ^ ) (13) 
n < x K. t i \ / / p =1 (mod 4) \ V ' 

+ 6>(i??<(^))5 with Rk(x) as given in Theorem 1. 

Theorem 2: Let /(#) be a polynomial with integral coefficients. The probabil-
ity that for two positive integers a, b9 a < b, we have (/(a), b) = 1 is 

where /l/(p) denotes the number of incongruent solutions of f(x) ~ 0 (mod p) . 

Proof: Let n be a fixed positive integer and consider all the pairs of integers 
(a, b) satisfying 1 < a < b < n: 

(1, 1) (1, 2) (1, 3) ... (1, n) 
(2, 2) (2, 3) ... (2, n) 

(3, 3) ... (3, n) 

(n, ri) 
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There are 

such pairs and the property (/(a), b) - 1 is true for B(n) pairs of them, where 

Bin) = <PF(l) + <PF(2) + ... + <PF(n) -—• 0 (l %-\ by Theorem 1. 

Hence, the considered probability is 

lim — — = [I (1 |- . 
n+o* A(n) p \ p z / 

As immediate consequences, we obtain, for example: 

Corollary 6 [4, Theorem 332]: The probability of two positive integers being 
prime to one another is 

1/5(2) = 6/n2. 

Corollary 7 (9,F(n) = (J)2(n)): The probability that, for two positive integers 
a and b, a < b, we have (a(a + 1), Z?) = 1, is 
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