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The purpose of this note is to present an elementary method for
summing the first n terms of a sequence which satisfies a given homo-
geneous linear recursion relation. The method is, in fact, a simple
extension of that normallyused for summing a geometric progression,

which we first recall.

Let:
2 n
S=a+t+ar t+tar +.. . tar
Then; 2 n _ ntl
-rS= -~ar-ar -. . . -ar - ar
Therefore:
S(1 -r)=a- arn+l
and if r # 1,
a - arn+1
S = 1 -r .

We now turnto the general case. If for every positive integer j,

Gj satisfies

(1) G .

J+k+2 c. G =0,

i=1 b jtk-i

where the c; are fixed quantities, we write, as above

e

_ %
S—Gl_+G2+G3+... .+ Gk+1 +Gk+2 +... +Gn i
[
= H
CIS c1G1+ch2+... +EC1Gk +C1Gk+1+_... +C1Gn-1§+C1Gn

H H

CZS= CZG]. +... +§C2Gk"1 +C2Gk +... +C2Gn_2§+C2Gn_1+C2
: :

ckS: ickGl +C.kG2 +... +can_k§+... +Can
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Since, adding vertically and using (1), the sum of the terms inside

the dotted lines is zero, we see:

S(1 +c¢ l14+c, +...+c

+...+ck)=Gl( 1 k-l)

+G2(1+c +...+ck_2)+... +G

1 1 k

+Gn(cl+c +...+tc )—fG

) " , Feeete) e G

n-1tc k k n-k+l°

If 1+c1+c2+... +Ck—l

The same method can be used to find

# 0, we can solve for S.

St

S i'G., for a given t,

i=1 b

if the Gi satisfy (1). To facilitate the presentation, we collect some
terminology and facts.

Let E be the operator with the property that

EG; = Gy
To say that Gj satisfies (1) is equivalent to the statement that the

operator

K
HE) =E+ 3 c, E
i1

k-1

when applied to any Gj’ yields zero (EO being the identity operator),

The associated polynomial

k .
bx) = x5+ T xS
i=1 *
is called the characteristic polynomial. * The special role of the num-

ber one in our generalization is now easily stated, for

L+c) +... +ck7! 0

if and only if unity is not a root of the characteristic polynomial.

>'<<]5(x) is unique if we assume Y (E) Gj = 0 for all positive j implies
the degree of ¥ (x} 2 k.



1965 AN ELEMENTARY METHOD OF SUMMATION 211
Itis known ([2], pp. 548-552) thatif ¢'(E)Gj =0, then Bj = jt'l G.
J

satisfies

[p(E)] * B, =0, for t21.

If ¢(1) #0 then (1) # 0, where Y(x) = [¢'(X)]t’ and the method just

described can be used to find

o S |
T= 3% B.= X j G. .
17 e J
Writing
kt
U (x) = th +s dixkt—l,
i=1
we find:
kt-j kt-1
paT= 32 p.B.+ X r i
0 =1 520 n-j
where
kt-j kt
p.=1+ 3% d. and r.= X d. .
J i=] ' L s

Since ¢>(E)Gj =0 and Bj = thj, one can easilyobtain T 1in terms of
Gl’ e Gk—l;Gn—k+2’ cees Gn'
The assumption that unity not be a root of the characteristic

polynomial has been critical to our discussion sofar. We now assume
3G.% satisfies
J
X(E) Gj =0

where X(E) is a polynomial with X(1) = 0. Factoringout all the fac-

tors x -1 in X(x), we obtain

X(x) = (x - 1)* b(x), where (1) # 0.
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Letting Cj = ¢(E)Gj, we note:

n k n-k k-1
(1) = > > 3
1 =2 | .= . G.q. + . Cc. + . G .s.,
S =93 0y Gy= 5 Gt D S5 5 Cang S
where
k .
X(x) = xk + X ¢ xk—l,
i=1
k-j k
g.=1+ 3 ¢ and s.= X c.
J i=1 i=j+1 *

However, it is known ([2], pp. 548-552) that if (E - 1) C; =0,
then Cj is a polynomial of degree £ a -.1. Ifweassumetheformulas

for

n
5P
j=1
are known, for j a positive integer, the only problem remaining is
that of determining the polynomial Cj = dO + dlj LI da_lja-l. It
is easy to show that the difference operator E-1 when applied to a
polynomial of degree r vyields a polynomial of degree r - 1. There-
fore (E - 1)jC1 involves only da-l’ da—Z oo, d. and t}'1e system of
linear equations onthe di obtained by computing (E - l)JCI, j=0,1,
2, ..., a-1 can clearly be solved for the di'
The above is a generalization of the technique used by Erbacher

and Fuchs to solve problem H-17. [4]

Example: Assume that for each positive integer j, Gj satisfies
X(E)G, = 0, where X(x) = (x - 1) (53 - 3x% +4x +2) = (x-1)° B(x). If
Gy =G, =G;3=G, =G =0, G, =1, then C1=<;I$(E)G1=0,2 C2=¢(E)
G, = O?: = 1, With Cj = dO + dl'j + dzj , we find

+3d, =0 and C1 = do +d1 +d2.

(E-1)°C =2d,=1, (E-1)C, =d

Hence Cj=1 - (3/2)] +%/2 and

Q
]
by
8
Q
w
1

1
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n-3
e } Ca .2
$(1)S=45=2G, -2G, +G, + JEl(l (33)/2 +j /2)+3Gn+6Gn_1+2Gn_2
n-3 >
= j§1 (1 - (35)/2 +3°/2) + 3G, +6G, _; +2G__,

In conclusion, we have seen how the elementary method used to
sum a geometric progression can be generalized to find the sum of the
first n terms of a sequence which satisfies a linear homogeneous re-
cursionrelation. It may be worth stating that this method is applicable
to a sequence whose terms are products of corresponding terms of
sequences each of which satisfy a linear homogeneous recursion rela-
tion (see [l] pp. 42-45 for a special case).

We propose as a problem for the reader: Find in closed form

the sum of the first n terms of the sequence ;wn% :
1,2,10,36,145, . . .

where w_=F G with F F + F (F1= F2= 1) and
n n n

n n+2 - " n+l
C7n+2 - ZGn+1 * C'n (Gl =1 GZ = 2).
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