AN ELEMENTARY METHOD OF SUMMATION

D. G. MEAD University of Santa Clara, Santa Clara, California

The purpose of this note is to present an elementary method for summing the first n terms of a sequence which satisfies a given homogeneous linear recursion relation. The method is, in fact, a simple extension of that normally used for summing a geometric progression, which we first recall.

Let:

$$S = a + ar + ar^2 + \dots + ar^n$$

Then:

$$-rS = -ar - ar^2 - \dots - ar^n - ar^{n+1}$$

Therefore:

$$S(1 - r) = a - ar^{n+1}$$

and if $r \neq 1$,

$$S = \frac{a - ar^{n+1}}{1 - r}$$

We now turn to the general case. If for every positive integer $\ j, \ G_i$ satisfies

(1)
$$G_{j+k} + \sum_{i=1}^{k} c_i G_{j+k-i} = 0,$$

where the c. are fixed quantities, we write, as above

$$\begin{split} \mathbf{S} &= \mathbf{G}_1 + \mathbf{G}_2 + \mathbf{G}_3 + \dots + \mathbf{G}_{k+1} + \mathbf{G}_{k+2} + \dots + \mathbf{G}_{n} \\ \mathbf{c}_1 \mathbf{S} &= \mathbf{c}_1 \mathbf{G}_1 + \mathbf{c}_1 \mathbf{G}_2 + \dots + \mathbf{c}_1 \mathbf{G}_k + \mathbf{c}_1 \mathbf{G}_{k+1} + \dots + \mathbf{c}_1 \mathbf{G}_{n-1} + \mathbf{c}_1 \mathbf{G}_n \\ \mathbf{c}_2 \mathbf{S} &= \mathbf{c}_2 \mathbf{G}_1 + \dots + \mathbf{c}_2 \mathbf{G}_{k-1} + \mathbf{c}_2 \mathbf{G}_k + \dots + \mathbf{c}_2 \mathbf{G}_{n-2} + \mathbf{c}_2 \mathbf{G}_{n-1} + \mathbf{c}_2 \mathbf{G}_n \\ \dots \\ \mathbf{c}_k \mathbf{S} &= \mathbf{c}_k \mathbf{G}_1 + \mathbf{c}_k \mathbf{G}_2 + \dots + \mathbf{c}_k \mathbf{G}_{n-k} + \dots + \mathbf{c}_k \mathbf{G}_n \end{split}$$

Since, adding vertically and using (1), the sum of the terms inside the dotted lines is zero, we see:

$$S(1 + c_1 + \dots + c_k) = G_1(1 + c_1 + \dots + c_{k-1}) + G_2(1 + c_1 + \dots + c_{k-2}) + \dots + G_k$$

$$+ G_n(c_1 + c_2 + \dots + c_k) + G_{n-1}(c_2 + \dots + c_k) + \dots + c_kG_{n-k+1}.$$

If $1 + c_1 + c_2 + \dots + c_{k-1} \neq 0$, we can solve for S.

The same method can be used to find

$$\sum_{i=1}^{n} i^{t}G_{i}^{t}$$
 , for a given t ,

if the $\,G_{i}\,$ satisfy (1). To facilitate the presentation, we collect some terminology and facts.

Let E be the operator with the property that

$$EG_i = G_{i+1}$$
.

To say that G_{j} satisfies (1) is equivalent to the statement that the operator

$$\phi(E) = E^{k} + \sum_{i=1}^{k} c_{i} E^{k-i}$$

when applied to any G_j , yields zero (E^0 being the identity operator). The associated polynomial

$$\phi(\mathbf{x}) = \mathbf{x}^k + \sum_{i=1}^k c_i \mathbf{x}^{k-i}$$

is called the characteristic polynomial.* The special role of the number one in our generalization is now easily stated, for

$$1 + c_1 + \dots + c_k \neq 0$$

if and only if unity is not a root of the characteristic polynomial.

* $\phi(x)$ is unique if we assume $\psi(E)$ $G_j = 0$ for all positive j implies the degree of $\psi(x) \ge k$.

It is known ([2], pp. 548-552) that if $\phi(E)G_j = 0$, then $B_j = j^{t-1}G_j$ satisfies

$$[\phi(E)]^t$$
 B_j = 0, for $t \ge 1$.

If $\phi(1) \neq 0$ then $\psi(1) \neq 0$, where $\psi(x) = [\phi(x)]^t$, and the method just described can be used to find

$$T = \sum_{j=1}^{n} B_{j} = \sum_{j=1}^{n} j^{t-1} G_{j}$$
.

Writing

$$\psi(\mathbf{x}) = \mathbf{x}^{kt} + \sum_{i=1}^{kt} d_i \mathbf{x}^{kt-i},$$

we find:

$$\mathbf{p}_0 \mathbf{T} = \sum_{j=1}^{\mathbf{k}t-j} \mathbf{p}_j \mathbf{B}_j + \sum_{j=0}^{\mathbf{k}t-1} \mathbf{r}_j \mathbf{B}_{n-j}$$

where

$$p_{j} = 1 + \sum_{i=1}^{kt-j} d_{i} \text{ and } r_{j} = \sum_{i=j+1}^{kt} d_{i}.$$

Since $\phi(E)G_j = 0$ and $B_j = j^tG_j$, one can easily obtain T in terms of $G_1, \ldots, G_{k-1}; G_{n-k+2}, \ldots, G_n$.

The assumption that unity not be a root of the characteristic polynomial has been critical to our discussion so far. We now assume $\{G_i\}$ satisfies

$$X(E) G_j = 0$$

where X(E) is a polynomial with X(1) = 0. Factoring out all the factors x - 1 in X(x), we obtain

$$X(x) = (x - 1)^a \phi(x)$$
, where $\phi(1) \neq 0$.

Letting $C_{i} = \phi(E)G_{i}$, we note:

$$\phi(1)S = \phi(1) \sum_{j=1}^{n} G_{j} = \sum_{j=1}^{k} G_{j} q_{j} + \sum_{j=1}^{n-k} C_{j} + \sum_{j=0}^{k-1} G_{n-j} s_{j},$$

where

$$X(\mathbf{x}) = \mathbf{x}^k + \sum_{i=1}^k c_i \mathbf{x}^{k-i},$$

$$\mathbf{q}_j = 1 + \sum_{i=1}^{k-j} c_i \text{ and } \mathbf{s}_j = \sum_{i=j+1}^k c_i.$$

However, it is known ([2], pp. 548-552) that if $(E-1)^a$ $C_j = 0$, then C_j is a polynomial of degree $\leq a-1$. If we assume the formulas for

$$\sum_{j=1}^{n} j^{p}$$

are known, for j a positive integer, the only problem remaining is that of determining the polynomial $C_j = d_0 + d_1 j + \ldots + d_{a-1} j^{a-1}$. It is easy to show that the difference operator E-1 when applied to a polynomial of degree r yields a polynomial of degree r - 1. Therefore $(E-1)^j C_1$ involves only d_{a-1} , d_{a-2} ..., d_j and the system of linear equations on the d_i obtained by computing $(E-1)^j C_1$, j=0, 1, 2, ..., a-1 can clearly be solved for the d_i .

The above is a generalization of the technique used by Erbacher and Fuchs to solve problem H-17. [4]

Example: Assume that for each positive integer j, G_1 satisfies $X(E)G_1 = 0$, where $X(x) = (x - 1)^3$ ($x^3 - 3x^2 + 4x + 2$) = $(x - 1)^3$ $\phi(x)$. If $G_1 = G_2 = G_3 = G_4 = G_5 = 0$, $G_6 = 1$, then $G_1 = \phi(E)G_1 = 0$, $G_2 = \phi(E)$ $G_3 = 0$, $G_3 = \phi(E)$ $G_3 = 1$. With $G_1 = G_0 + G_1$ $G_1 = G_2$ we find $G_1 = G_2$ $G_2 = G_3$ $G_3 = G_4$ $G_4 = G_5$ $G_5 = G_6$ with $G_1 = G_0$ $G_1 = G_1$ $G_2 = G_2$ $G_3 = G_4$ $G_4 = G_5$ $G_5 = G_6$ $G_6 = G_6$ $G_6 = G_6$ $G_6 = G_6$ $G_1 = G_6$ $G_1 = G_6$ $G_2 = G_6$ $G_3 = G_6$ $G_4 = G_6$ $G_6 =$

$$\phi(1) S = 4 S = 2G_1 - 2 G_2 + G_3 + \sum_{j=1}^{n-3} (1 - (3j)/2 + j^2/2) + 3G_n + 6 G_{n-1} + 2 G_{n-2}$$

$$= \sum_{j=1}^{n-3} (1 - (3j)/2 + j^2/2) + 3G_n + 6G_{n-1} + 2G_{n-2}.$$

In conclusion, we have seen how the elementary method used to sum a geometric progression can be generalized to find the sum of the first n terms of a sequence which satisfies a linear homogeneous recursion relation. It may be worth stating that this method is applicable to a sequence whose terms are products of corresponding terms of sequences each of which satisfy a linear homogeneous recursion relation (see [1] pp. 42-45 for a special case).

We propose as a problem for the reader: Find in closed form the sum of the first n terms of the sequence w_n :

where
$$w_n = F_n G_n$$
 with $F_{n+2} = F_{n+1} + F_n$ ($F_1 = F_2 = 1$) and $G_{n+2} = 2G_{n+1} + G_n$ ($G_1 = 1$, $G_2 = 2$).

REFERENCES

- 1. Dov Jarden, Recurring Sequences, Jerusalem, 1958.
- 2. C. Jordan, "Calculus of Finite Differences," Chelsea, New York, Ed. 1950.
- 3. James A. Jeske, "Linear Recurrence Relations, Part I," The Fibonacci Quarterly, Vol. 1, No. 2, pp. 69-74.
- 4. Problem H-17, The Fibonacci Quarterly, Proposed in Vol. 1, No. 2, 1963, p. 55 and solved by Joseph Erbacher and John Allen Fuchs in Vol. 2, No. 1, 1964, p. 51.