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PROBLEMS PROPOSED IN THIS ISSUE 

H-478 Proposed by Gino Taddei, Rome, Italy 
Consider a string constituted by h labelled cells cu c2?..., ch. Fill these cells with the natural 

numbers 1, 2, ..., h according to the following rule: 1 in c1? 2 in c2, 3 in c4, 4 in c7, 5 in cn, and 
so on. Obviously, whenever the subscript j of Cj exceeds h, it must be considered as reduced 
modulo h. In other words, the integer n (\<n<h) enters the cell cj(^nh), where 

and the symbol (a) denotes a if a < b, and the remainder of a divided by b if a > b. 
Determine the set of all values of A for which, at the end of the procedure, each cell has been 

entered by exactly one number. 

H-479 Proposed by Richard Andre-Jeannin, Longwy, France 

Let \Vn } be the sequence defined by 

V0 = 2, VX = P9 and Vn = PV„_X - QVn_2 for n > 2, 

where P and Q are real or complex parameters. Find a closed form for the sum 

H-480 Proposed by Paul S. Bruckman, Edmonds, WA 
Let/? denote a prime = 1 (mod 10). 

(a) Prove that, for all p # 1 (mod 1260), there exist positive integers k, u, and v such that 

(i) k\u2; 

(ii) /? + 5* = (5f/-l)(5v-l). 

(b) Prove or disprove the conjecture that the restriction /?# 1 (mod 1260) in part (1) may be 
removed, i.e., part (a) is true for all p = 1 (mod 10). 
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SOLUTIONS 

Bunches of Recurrences 

H-461 Proposed by Lawrence Sorrier, Washington, D. C 
(Vol 29, no. 4, November 1991) 

Let {un} = u(a, b) denote the Lucas sequence of the first kind satisfying the recursion relation 
un+2 = aun+1 + bun, where a and b are nonzero integers and the initial terms are u0 = 0 and ux = l. 
The prime/? is a primitive divisor of un if p\un butp\um for 1 < m < n-1. It is known (see [1], p. 
200) for the Fibonacci sequence {Fn} = u(l, 1) that, ifp is an odd prime divisor of F2n+1, where 
n > 1, then p = 1 (mod 4). 

(i) Find an infinite number of recurrences u(a, b) such that every odd primitive prime 
divisor/? of any term of the form u2n+l or uAn satisfies p = 1 (mod 4), where n > 1. 

(ii) Find an infinite number of recurrences u{a, b) such that every odd primitive prime 
divisor/? of any term of the form uAn or u4n+2 satisfies p = 1 (mod 4), where n>\. 

Reference 

1. E. Lucas. "Theorie des fonctions numeriques simplement periodiques." Amer. J. Math. 1 
(1878): 184-240, 289-321. 

Solution by Paul S. Bruckman, Edmonds, WA 

We write P ePD(un) if/7 is an odd primitive prime divisor of un. The following well-known 
result is stated in the form of a lemma. 

Lemma: Suppose m- x2 +y2, where x,y e Z + . Ifp is any odd prime divisor of m, such that 
/?jgcd(x, y), then/? = 1 (mod 4). 

Next, we indicate some easily-derived results for a (generalized) Lucas sequence of the first 
kind: 

rn -sn 

%= , /i = 0 , l ,2 (1) 
r-s 

where 
r = \(a + 0)9 s = ±(a-6l 9 = (a2+4hy. (2) 

Note that 
r + s = a, r-$ = 6, rs = -b. (3) 

Also, define the (generalized) Lucas sequence of the second kind as follows: 

vn=rn+s\ /i = 0,1,2,. . . . (4) 

As we may readily verify: 
w2»=«»v„; (5) 

U2n+l=bul+u2n+V (6) 

Also, it is clear that the un*$ and v^'s are integers for all n. 
We will establish the following result, solving part (i) of the problem: 
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Ifa = j 2 - / , h = l2f, where/,; eZ+,gcd(/,y) = l, thenps l(mod4) 
for all prime/? such that/? sPD(u2n+l) orp ePD(u4n), n>\. 

Proof of (*): We note that 62=a2+4b = (i2 - j 2 ) 2 + 4i2j2 = (i2 + / ) 2 , so 0 = i2 + / . 
Also, r = i2,$ = -j2. We see from (6) that u2n+l = X2 +72 , where X = ijun,Y = un+v Also, 
from (4), v2n = X2+Y*9 whtrtXi =i2\Y{ = j 2 n . If p ePD(u2n+l\n>l, then p\u2n+l, p\un, 
p\un+l. We cannot have p\ij9 for otherwise, Jp|Ar=>/?|7 = i/w+1, a contradiction. Therefore, 
/?| X, p\Y. Then, by the lemma, p = l (mod 4). 

If pePD(u4n),n>l, then ^K„,/?!%„. Note that w4n=w2wv2w by (5). Thus, p\v2n = 
X2+Y2. Since gcd(i,y*) = l, also gcd(X1,71) = l. By the Lemma, /?==1 (mod 4). This 
completes the proof of (*). 

Also, we shall prove the following result, which solves part (ii): 

lfa = i2 + j2,b = -i2}2, where i, j eZ+, gcd(i, j) = 1,i > j , then 
/? = l(mod4) for all primep such that p GPD(u4n) orp GPD(u4rj+2),n> 1. 

Proof of (**): We note that 62 =a2 +4b = (i2 +j2)2 -4i2j2 =(i2 -j2)2, so 6 = i2-j2. 
Also, r = i2,s = j 2 , and so vw = Z2

2+72
2, where X2 =/w,72 = / . Tf pePD(u2n), n>\ then 

^ 2 « , i ? R - - U s i n § (5X PK = X%+Y?. Since gcd(i,./) = l also gcd(Ar
2,72) = l. By the 

Lemma, /? = 1 (mod 4). Since In - 4n! or 4n' + 2, we see that.(**) is proven. 

In summary, we that / and j in (*) and (**) are arbitrary natural numbers, subject only to the 
condition that gcd(z, j) = 1 [and / >j in (**)]. Hence, there are infinitely many sequences u(a, b), 
with a and b as given in (*) and (**), that provide solutions to the two parts of the problem. 
Also solved by the proposer. 

Root of the Problem 

H-462 Proposed by loan Sadoveaanuv, Ellenshurg, WA 
(Vol 30, no. 1, February 1992) 

Let G{x) = xk +axxk~l+ --+ak be a polynomial with c a root of order p. If G(/7)(x) 
denotes the p^ derivative of G(x), show that {npcn~p I G{p){c)} is a solution of the recurrence 
un = cn~k - axun_x - a2un_2 akun_k. 

Solution by C. Georghiou, University ofPatras, Patras, Greece 
We will use the operator method of Difference Calculus (see, e.g., Marray R. Spiegel, 

Calculus of Finite Differences and Difference Equations [New York: McGraw-Hill, 1971], p. 
156). Let G{x) = (x-c)pg(x). Then g(c) = G{p)(c)Ip\ (* 0). The given recurrence is written 
as G(E)un = cn, where E is the shift operator, i.e., Eun - un+l. Therefore, the solution is 

" G(E) (E-c)pg(E) (E-c)p g(c) G(p)(c) (cE~c)p G{p)(c) Ap 

Now, from the Summation Calculus, we have 
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p\ £1 (p-k)\ 
where, as usual, r£k) -n{n-V) . . . («- k + 1) is the factorial function, and Ax, A2,...,Ak are arbi-
trary constants. But it is known that 

np =n™+YdSfnw (2) 

where 5 ^ are the Stirling Numbers of the Second Kind. If we choose Ap_k =k\S^ I p\ then 
(1), in view of (2), becomes A"pl = np Ip\ and the assertion follows readily. 
Also solved by P. Bruckman andF. Flanigan. 

Fee Fi Fo Fum 

H-463 Proposed by Paul S. Bruckman, Edmonds, WA 
(Vol 30, no. 1, February 1992) 

z(l + z + z2) Establish the identity: ]T O(w) — 
(1-z2)2 ' (1) 

where z E C , |Z|< 1, and O is the Euler totient function. As special cases of (1), obtain the follow-
ing identities: 

f>(2/ i) /F2 l t f = V5/Z*, 5=1,3,5,...; (2) 

Y,<t>(2n-l)/L{2n_1)s = Fsyf5/L2
s, 5=1,3,5,...; (3) 

flQ(n)/Flu = (Ll+l)/F?j5, 5 = 2,4,6,...; (4) 

f ( - l ) - 1 * ( i i ) / / V , = (4-l) / /5;2V5, 5 = 2,4,6,...; (5) 
«=1 

„=i N/5/Z*, 5 = 2,4,6,...; 

X(- i r 1 0(2»- l ) / J F ( 2 „_ 1 ) , = 4 / F / V 5 , 5 = 1,3,5,...; (7) 

X( - i r 1 0 (2» - l ) /L ( 2 „_ 1 ) ,=F i V5 /Z 2 , 5 = 2,4,6,.... (8) 
«=1 

Solution by Harris Kwong, SUNY College at Fredonia, Fredonia, NY 
For|z|<l, 

m z ™ 

«=1 A ^ «=1 godd 
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For odd t and s > 0, the coefficient of**, where k-2st, is 

2 > ( 2 ' d ) = O(2 ' )2>(«0 = * ( 2 > * = 
# # 

[25-1/ i fs>0, 
/ if 5 = 0. 

Therefore, 

and 
770dd A ~ ^ «=1 ( I - * J 

r " °° r 2 

neven x ^ n=l ^x L ) 

which prove (1). Letting a = (1 + V5) / 2 and j3 = (1 — V5) / 2 , we have a/3 = -1 and the identities 

1 1 1 _ pm 

41 Fns am-p"s (-l)m-p2ns' 
1 1 _ pm 

Lm~ am + pns~ {-\)m + p2m' 

p2s _ (ap)2s \llL) if* is odd 
(l-p2s)2 [as-(apypsf [V5F2 ifs is even. 

ps(l + p2s) = (aPY[as + (apyps] = |-i%V5/ Z,2. if s is odd, 
(1 -0 2 ' ) 2 ~ [ocs-(apyps]2 ~{LS/5F2 ifsiseven. 

P2s _ (aP)2s _ fl/57? if s is odd, 
(l + p2s)2~[as + (apypsf~\vL2

s ifsiseven. 

Ps(l-P2s) = (apy[as-(apyps] = \-L,15F2 if sis odd, 
(1 + 02*)2 ~ [ccs+(ccpypsf ~\F,SIL2, ifsiseven. 

To prove (2)-(8), proceed as follows: 
(2) For odd s, it follows from (A), (**), and (C) that 

1 ^ 0(2«) ^ _ . , pm p 2s j 

•v5n=1 F2ns „even \~p2m {\-p2sf L2
S 

(3) For even s, it follows from (B), (*), and (D) that 

f,g(2w-l) v /T Ps(l + PS)_FSS 
2L. j Zs^V'K _ nlm n - r t 2 ^ 2 f2 ' 
n=l ^(2n-l)s nodd • P V1 P ,> ^ j 

(4) For even s, it follows from (A), (1), (C), and (D) that 

(A) 

(B) 

(C) 

(D) 

(E) 

(F) 
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Iy^) = y^ r = ps(l + P2s) + p2s ^Ls+1 

(5) For even s, it follows from (A), (1), (C), and (D) that 

l fr n„-i<s(/Q_ f^r, (-PT P\\+P2s)-P2s 4 - 1 

(6) It follows from (A), (**), and (E) that 

J _ y M ) „ - i O ( 2 « ) = _ y (iff')" = p2s jUSFf if^isodd, 
<J*£i F2ns ntLK)l-(iP')2" (} + P2sf \\IL] ifsiseven. 

(7) For odd s, it follows from (A), (*), and (F) that 

1 £ ( i r l O ( 2 n - l ) _ l ^ 0 ( n ) (ffT _ 0'(l-j82 ')_ 4 
V5£r F(2„_I}, /Bti wi-(/ffy- (i+/32y 5/7 

(8) For even 5, it follows from (A), (*), and (F) that 

^ 1 Q ( 2 n - l ) _ l ^ (ipy =PS(1-P2S)_FSJ5 
£1 ' k2n_l)s - ? £ U l - ( # ' ) 2 " ~ d + /32j)2 " ^ ' 

4̂feo solved by C Georghiou, P. Haukkanen, R Hendel, and the proposer. 

APPLICATIONS OF FIBONACCI NUMBERS 
VOLUME 4 

New Publication 

Proceedings of 'The Fourth International Conference on Fibonacci Numbers 
and Their applications, Wake Forest University, July 30-August 3, 1990 

Edited by G. E. Bergunt, A. N. Philippou, and A. F. Horadam 
This volume contains a selection of papers presented at the Fourth International Conference on 
Fibonacci Numbers and Their Applications. The topics covered include number patterns, linear 
recurrences, and the application of the Fibonacci Numbers to probability, statistics, differential 
equations, cryptography, computer science, and elementary number theory. Many of the papers 
included contain suggestions for other avenues of research. 
For those interested in applications of number theory, statistics and probability, and numerical 
analysis in science and engineering: 

1991, 314 pp. ISBN 0—7923—1309—7 
Hardbound Dfl. 180.00/£61.00/US $99.00 

A.M.S. members are eligible for a 25% discount on this volume providing they order directly 
from the publisher. However, the bill must be prepaid by credit card, registered money order, or 
check. A letter must also be enclosed saying "I am a member of the American Mathematical 
Society and am ordering the book for personal use." 

KLUWER ACADEMIC PUBLISHERS 
P.O. Box 322, 3300 AH Dordrecht, P.O. Box 358, Accord Station 
The Netherlands Hingham, MA 02018-0358, U.S.A. 

Volumes 1-3 can also be purchased by writing to the same address. 
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