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1. INTRODUCTION AND GENERALITIES 

Let us consider the Fibonacci polynomials U„(x) and the Lucas polynomials Vn(x) (or sim-
ply Un and Vn, when no misunderstanding can arise) defined by the second-order linear recur-
rence relations 

Un=xUn.l+Un_2{U^0U^ll (1.1) 
and 

Vn = xVn_^Vn_2 (F0 = 2,F1 = x), (1.2) 
where x is an indeterminate. It is well known that the polynomials Un and Vn, can be expressed by 
means of the Binet forms 

t/„=(a"-j3")/A (1.3) 
and 

Vn=a"+P", (1.4) 
where 

a = (x + A)/2 (1.5) 
p = (x-A)/2 = -l/a = x-a. 

Recall that further expressions for Un and Vn, (e.g., see [1], [3]) are 

L(»-1)/2L .x 

u„= i in-yjyi-2j(n>D 
and 

L«/2j 

(1.6) 

where [«J denotes the greatest integer not exceeding a. 

In [4] we considered the numbers F^p and 1$ obtainable by taking the first derivative of the 
polynomials (1.6) and (1.7) at x = 1, and studied their properties. The basic results established in 
[4] are 

= {nLn-F„)IS (1-8) FP = ^-Un(x) 
ax x=l 
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LP = 
dx 

nF„. (1.9) 

where F„ and Ln are the usual Fibonacci and Lucas numbers, respectively. Observe that the num-
bers F„(1) and L® are, respectively, denoted by F^ and Lf

n in [4]. 
In this paper we consider the second derivative with respect to x of the polynomials (1.6) and 

(1.7) and investigate some of their properties, thus keeping, in part, the promise made to the 
reader in section 4 of [4]. In the concluding section, we offer a brief glimpse of the implications 
of investigating the kth derivatives of U„(x) and Vn(x) 

1.1 Definitions 
Let us define the polynomials U^2) and F„(2), which are also obtainable from (1.6) and (1.7), 

as 

and 

U?=i?U*= Z(^-l-2i)(^-2-27-)[W-)-
y=o 

J\x"-3-2j (»>1), 

V(2) = • 
dx 

L(«-2)/2j 

j=0 

n{n-2j){n-\-2j)fn - j\n-2-y 
n-j V J 

(»>1). 

Observe that 

and 
Off* = F0

(2) = 0 [from (1.1) and (1.2)] 

(1.10) 

(1.11) 

(1.12) 

(1.12) 

according to the convention that a sum vanishes whenever the upper range indicator is less than 
the lower one. From (1.10)-(1.12f) we can write the first few elements of the sequences {f/̂ 2)}°° 
and {Fw

(2)}°°, namely, 

U™ 
up 
up 
up 
up 
up 
um 

um 
TjV) 

=u™=u™= 
= 2 
= 6x 
= l2x2+6 
= 20x3+24x 
= 30x4+60x2 

= 42x5+120x3 

= 56x6+210x4 

= 72x7+336xf 

= 0 

4-12 
+ 60x 
+ 180x2 

+ 420x3 
+ 20 
+ 120x 

V(2)=V(2)=0 

V™=2 
V}2)=6x 
F4

(2) = 12x2+8 
V5

(2) = 20x3+30x 
V6

(2) = 30x4+72x2+18 
V7

(2) = 42x5+140x3+84x 
F8

(2) = 56x6 +240x4 +240x2 +32 
V9

(2) = 72x7 +378x5 +540x3 +180x 

(1.13) 

K (2) = 90x8 +560x6 +1050x4 +600x2 +50. 
In this paper we confine ourselves to studying some properties of the above sequences for the 

case x = 1. Since, letting x = 1 in (1.1)-(1.5), we have the usual Fibonacci and Lucas numbers, 
the sequences of integers {£/£2)(l)} and {F„(2)(l)} will be denoted by {F„(2)} and {Z^2)} and defined 
as Fibonacci and Lucas second derivative sequences, respectively. 
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From (1.13), the first few values of F^ and Z^2) are 

n 
F(2) 

42) 

0 1 2 3 

0 0 0 2 

0 0 2 6 

4 5 

6 18 

20 50 

6 7 

44 102 

120 266 

8 

222 
568 

9 

466 
1170 

10 

948 
2350 

(1.14) 

A large number of relationships involving F}2\ L^\ F^l\ l£\ Fn and L„ will be exhibited in 
the following sections. Their proofs are not very complicated but they are rather lengthy, so, for 
the sake of brevity, only some of them will be given in full detail. 

2. EXPRESSIONS FOR F( 2 ) AND L(2) IN TERMS OF FIBONACCI 
n n 

AND LUCAS NUMBERS 
Expressions for F^2) and Z^2) in terms of U„ and V„ can be obtained from the definitions 

(1.10) and (1.11) and the Binet forms (1.3)-(1.5). Letting the bracketed superscript (k) denote 
the Jfi1 derivative with respect to x and taking into account the results established in section 2 of 
[4], we can write 

72 
um=d2 <xn-Pn

=dLT<i)=d n(an + p")*-*(<xn-n 
dxz dx dx 

rn _ fl"M(l) A3 K a " + j3w)A-x(a"-/3")](1 )AJ-(AJ)(1)Ka" + j3")A-x(a77»j3")] 

[(n2 -l)Af/JA3 -3xA[nAV„ -xAUJ _ [(n2 -1)A2 +3x2]Un-3nxVn 

Analogously, we have 

dx dx dx A 

= n 
[(a")(I)-(j8")(1)]A-A(1)(a"-/3") 

na" + n/5"-x(a"-/?")/A _n(nV„-xUn) 
A2 A 

Lett ing x = 1 in (2.1) and (2.2) yields 

F(2) = (5n2-2)Fn-3nL„ 

and 
25 

7(2) = <nLn~F
n) 

5 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

whence the expressions for negative-subscripted elements of the Fibonacci and Lucas second 
derivative sequences can be easily deduced, namely, 
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F _ ( 2 ) = ( _ i r i F n ( 2 ) ( 2 5 ) 

and 

^=(-iye (2.6) 
Observe that, from (1.8), (1.9), (2.3), and (2.4), we get the following equivalent expressions for 
F^andZf: 

F^ = {n^-3F^-Fn)l5, (2.7) 
and 

42)=^„(1)- (2.8) 

3. SOME IDENTITIES INVOLVING THE NUMBERS F„(2) AND L™ 

Some simple properties of the numbers F„(2) andZ ,̂2) can be derived from (1.8), (1.9), and 
(2.3)-(2.8). First, let us state the following four identities. 

Identity 1: F™m + (-l)mF^m = LJ** + FJ%> + 2mFmF?\ 

Identity 2: F™, -{-l)mF^m = FmL? + L„F™ + 2nFnF%\ 

Identity 3: Z&, + {-l)m%]m = LJ™ + V 2 } + 21^1%. 

Identity4: ]%m-{-l)mI%lm = nL„F^ +mLmF? + («2 + m2)F„Fm. 

For the sake of brevity, we shall prove only Identity 1. 

Proof of Identity 1: From (2.3) we write 

F<H + ( - l ) f f l ^ = {[5(n + mf -2]Fn+m -3(n+m)Ln+m 

+ (-ir[5(n-m)2-2]Fn_m-3(-ir(n-m)Ln_m]/25 

= {[5(n2 +m2)-2][F„+m +(-irF„_m] + 10nm[Fn+m-(-lTFn_m] 

- 3 » [ 4 + m + ( - i r 4 _ J - 3 / W [ 4 + m - ( - i r Z „ _ J } / 2 5 . (3.1) 

After some manipulations involving the use of (2.3), (2.4), (1.8), and the identities \X-\A [5, 
page 59] a compact form of which is 

Fh+k+(-l) Fh_k = FhLk 

Fh+k ~ ( _ 1 ) Fh-k = LhFk> 

the identity (3.1) can be rewritten as 

F™m +(-l)m^_2i = [5(«2 +m2)FnLm + \0nmFmLn -2FnLm-3nLnLm-\SmFnFJI25 

= Lm[(5n2-2)Fn-3nLn]/25+mFn(mLm-3FJ/5 + 2nmFmLn/5 

= LmF™ + mF„(mLm -FJ/5-2mFnFm 15 + 2nmFmL„ 15 

= LmF^+FnL^ +2mFm(nLn -F„)/5 

= LmF?>+FnI™+2mFmF?\ n 
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Particular cases of Identities 1-4 are 

Identity 5 (m = 1 in Id. 2): F^\ + Fg\ = I%\ 

Identity 6 (m = 1 in Id. 4): Z ^ + 7&\ = F„(1) + («2 + \)Fn = F„(1) +»41) +F„. 

Identity 7 (m = 2 in Id. 2): F„(3 - i£> = 4 2 ) + 2Z£>. 

Identity 8 (n = m in Id. 2): F2<2) = 3FJ$ + LJ%\ 

Identity9{n = mmId. 3): Zg> = 2[LJ™ + (Z£>)2]. 

Identity 10 (n = 2m in Id. 2): F™ = Fm[I$> +4mIJ*T>]+[Lia + (-l)m]/*2). 

7<fe«% 7J (» = 2m in Id. 3): Z&> = 302\L2m + (-lT] + 2Lm(L%)2}. 

Next, we derive 

Identity 12: FJpI$> -$>F™ = [F„(5L(2)+4L^) + 4(-l)"n3]/25. 

Proof: From (1.8), (1.9), (2.7), and (2.8), we have 

/W-/W=[*KW^ (3.2) 
Using the identities 

{F^f = {n2L2
n+F2 -2nF2„)/25, (3.3) 

(^)2 = n2F2, (3.4) 

F^^=n(nF2n-F2)/5, (3.5) 

Fn^ = nF2, (3.6) 

and the identity I12 [5, page 56] [namely, 57̂ ? = Z,2 -4(- l)*] , we find that (3.2) becomes 

7ff >/ff > - 7ff7*2> = ("*% + "F"5 ~ 2n2p2" - »3F„2 + 3n'F2» ~ 3nF" + H F A / 5 

= [n\L2„ -5F2) +n2F2„ + 3rtF2]/25 = [4 ( - l )V +n2F2n + 3nF2]/25 

= \nFn(nLn + 3F„) + 4(-l) V ] / 25 = [5Fjg> + 4nF2 + 4 ( - l ) V ] / 25 

= [F„(5rt2) + 41$) + 4(-1)"«3] / 25. D 

Let us conclude this section by giving the Simson formula analogs for Z^(2) and I$2\ 

Identity 13: (F™)2 -F%F% = ***>-**» ^-^(-^(^-13) 

Identity 14: (L™)2 - / f l / f l = ̂  ~ 2 ^ ~ 4 g ^ 2 ( - l ) V -1) 
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Proof of Identity 14: Using (2.4) and identities I19,120 [5, page 59], 

Fh-kFh+k-FZ = {-ltMF* 

h_kLh+k-L2
h = 5{-\rkFZ, 

we can write 

(4 2 ) ) 2 - 4 M ? i =n\nLn -F„f /25-(n2 -l)[(n-l)L„_1-F„_l][(n + '0L„+1 -F„+l]/25 
= n2(n2L2„ +F„2 -2nF2n)/25-(n2 -\){{n2 - l)[L2„ -5(- l )"] 

- ( » - l ) [ F 2 n - ( - l ) " ] - ( » + l)[F2„ + (-l)"]+JF„2+(-l)"}/25. (3.7) 

After some manipulations involving the use of I12 [5, page 56] and the identities I15, I18 [5, page 
59] a compact form of which is Llh + 2(-l)/2 = Z2, the identity (3.7) can be rewritten as 

(42>)2 - 4,2_\42
+\ = [(2n2 - \)L2

n - 2nF2n +F2 + (-1)" (5«4 - 9n2 + 4)]/ 25 

= [2nX-2«F 2 „ + J F M
2 - I 2 +4( - l ) "+5» 2 ( - l )> 2 - l ) ] /25 

= [2n2L1„ -2nF2n -4F2 +5n2(-l)"(n2 - l )] /25. D 

Simson formula analogs for U^ and V^ may be obtained from (2.1) and (2.2), but their dis-
covery is left to the perseverance of the reader. 

4, SOME SIMPLE CONGRUENCE PROPERTIES OF F™ AND iS^ 

Letting m = 1 in Identity 1 and Identity 3, we obtain 
F%-m = ̂ +2FM (4.1) 

and 
& - & = $>+ 21™, (4.2) 

respectively. From (4.1) and (4.2), the recurrence relations 

F^ = F^+F^2+2F^ (F^ = F<V = 0) (4.3) 

and 
tf) = # ) . + J&+2ZS>1 (42)=42) = 0) (4.4) 

can be readily obtained, where the initial conditions have been taken from (1.14). The relations 
(4.3) and (4.4) allow us to state the following proposition. 

Proposition 1: F^ and L^ are even for all n. 

Further congruence properties of Fw
(2) and Z^2) can be easily established. 

Proposition 2: F„(2) = 0 (mod 6) for n = 0, ± 1, ± 2, ± 4, ± 5 (mod 12). 

Proposition 3: L^ = 0 (mod 6) for n = 0 (mod 3) or n = ±1 (mod 12). 

Proposition 4: I%} = 0 (mod 10) for n = 0, ± 1 (mod 5). 
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The proofs of Propositions 2-4 are similar, so, for the sake of brevity, we shall prove only Propo-
sition 3. 

Proof of Proposition 3: From (2.4) and Proposition 1, it is apparent that we have to find 
conditions for n(nLn-Fn) to be divisible by 3. The first condition is trivial: n = 0 (mod 3). The 
second condition is given by the solution of the congruence nLn =Fn (mod 3). The repetition 
period of the sequences {(Fn)3) and {(Ln)3) (the Fibonacci and Lucas sequences reduced modulo 
3) is 8 (see [2, page 55]), whereas the repetition period of the sequence of naturals reduced 
modulo 3 is 3. Since l.c.m.(3, 8) = 24, we have to inspect the elements of the sequences 
{{nLn)3}^ and {(Fn)3)l3 and look for the equality 

(nLn)3 = (Fn)3. (4.5) 

It is readily seen that (4.5) is fulfilled for n = 0, ± 1 (mod 12). • 

5. EVALUATION OF SOME SERIES INVOLVING F^2) AND L(^ 

In this section, several finite series involving F^ and L^ are considered and closed form 
expressions for their sums are exhibited. For the sake of brevity, only a few among them are 
proved in detail by using some results obtained in [4] and the further identities 

I,K-l),F^2t = -(nLn+i+2F„)/5 = -F<?l, (5.1) 
7=0 

£i(-l) 'Z„_2 / = nFn+x = L% -Fn+l, (5.2) 
7=0 

jrFiF„_i=(nL„-F„)/5 = F„m, (5.3) 
7 = 0 

£ ^ 4 _ , . = ( « + l ) ^ = Z « + i v (5.4) 
7=0 

The proofs of (5.1)-(5.4) can be carried out with the aid of the Binet forms (1.3)-(1.5) and [4, 
(3.1)]. Since they are rather tedious, they are omitted in this context. 

5,1. Results 

The following results have been obtained. 

Proposition 5: £ / ? 2 > = F™ -2(F„%-F„+4 + l). 
7=0 

Proposition 6: £ ^ = L%2 - 2(Z£>3 - Ln+4 + 2). 
7=0 

Proposition 7: £ f f k ( 2 ) = [5n2F2„_2 - (3n + 2)F2n +nF2„_7]/25. 
7=0 V J 
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Proposition 8: £ fa V > = »[(« - 1)Z2„_2 + 2F2„_2 ] / 5. 

We point out that several equivalent expressions for the above sums can be given. For example, 
we have 

Proposition 8': j ^ j / f = 4 - i ( ^ - \ + ̂ 1)+«[3F2„_2 +2(/i-l)(-l)"]/5. 

Finally, the following convolution identities have been established. 

Proposition 9: £i^(1)i7„_, = -F„( 2 ) . 

Proposition 10: £ A(1)-*V-* = - 4 2 ) • 
1=0 ^ 

Proposition 11: £ ^ ( 1 ) 4 - , - = - 4 2 ) + *»(1) • 
1=0 ^ 

Proposition 12: £ i fz , , . , . = | F „ < 2 ) + 2F„(1) + 4 ? + F„. 
/=0 

5.2 Proof's 

Proof of Proposition 5: From (2.7), (1.8), and (1.9), we have 

/=0 3 V/=0 /=0 /=0 J J \i=0 D i=Q J /=0 7 

Using the Binet forms (1.3)-(1.5) (with x = 1), [4, (3.1) and (3.2)] and identity \ [5, page 52] 

Z ^ = ^ + 2 - l , 
/=1 

we find that (5.5) becomes 

4 = 3 
^ 3(" 

V3 V/=o /=o y D V/=o /=o 

1 ' w 

/^2„,«+3 /o,-2 , 

: (4 + 2- l ) 

V^ 
n'a"" -(2n2 +2w-l)«"+ i + (» + l)2«"+1-q^ - « 

V 
«2j3"+3 - {In2 + 2« -1)0 n + 2 + (/i +1)2 p"+l - p2 - p 

-a 
( „~n+2 tn+1 , o \ nan+1-(n + l)ocn+i + oc npn+z-(n + l)pn+l +p 

P2 a 
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\[n2Fn+6 -{In1 + 2n-l)Fn+5 + (n + l)V„+4 -S~[nLn+4 -(n + l)Ln+3 + 4]~(F„+2 -1) 

3 2 
-"2^»+3 - 2"Fn+3 + F„+6 + n2F„+4 - - (nL„+2 - L„+3 )--F„+2-\0 

i r 3 3 
= dn2F„+2-2nF„+3 +Fn+6--{nLn+2 -2L„+2 -F„+2)-F„+2 + -(L„+3 + 2L„+2)-lO 

-l)F„+2 -2nFn+3 +Fn+6 - | [ ( w + 2 )4 + 2 -F„+2] + 3F„+3 -Ws-10 

= i[(»2 - l)F„+2 - 2»F„+3 + 3F^3 + Fn+6 - 3F$2 -10] 

= ^ [ ( 5 » 2 -2)F„+2 -3»Z„+2 -10»F„+3 -6 i„ + 2 + 5 ( 3 ^ +JF„+6)-5o]. 

The equality (5.6) 

(5.6) 

_. _) can be rewritten as 

An=±^5(n+2)2_2y 3(» + 2)L„+2 - 20(« + \)Fn+2 - 10»F„+3 + lOL„+4 

= ̂ ll-^[lOn(2F„+2+F„+3) + l0(2Fn+2-L„+4) + 50] 

= F<& ~[2nL„+3 -2(Ln+4 -2Fn+2)]-2 = F% + l(F„+5-F„-nL„+3)-2 

= ^-2^+^(Fn+4-Fn+3Ln+3)~2 = F^l-2F^3+2F„+4-2. D 

Proof of Proposition 7: From (2.7), we can write 

Bn=i(r>(2)=\\i{")^ -3tfrVi) -tfr> 
Now, from [4, (3.5), (3.10), (3.3)], we have 

i=0^ ' /=(A ' 

£ ( ^ ( 1 ) = ^ x /2 = ^ [ ( 2 » - 1 ) 1 ^ -F2„_J, 

; = 0 V 7 

respectively. Therefore, from (5.8)-(5.10) and (1.8), (5.7) can be rewritten as 

-50} 
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(5.7) 

(5.8) 

(5.9) 

(5.10) 
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B = nF2n-i+n(n-\)F2„_2-
3(2n-l)L2n.l-3F2l_1 

10 In 

= —[lOnF^ + l0n2F2„_2 - \0nF2n_2 - fc iL,^ + 3L2n_, + 3F2n_, - 10F2„] 

= ^2Fin-2 + K 5 ^ i - 5^ -2 " 34«-i) - 2F2n] 

= ̂ 2F2n.2 + n(F2„_7 - 3F2n)-2F2n] D 

6. FURTHER RESEARCH 
The first and the second derivatives of polynomials (1.6) and (1.7) have been considered in 

[4] and in this paper, respectively. More particularly, several properties of the sequences of 
integers obtainable by taking the above mentioned derivatives at x = 1 have been investigated. 

The generalization to the analogous sequences {F%k)} and 0n
k)}, defined as 

Fm = 
dx 

•U„(x) 
L(«-i-l)/2j 

x=l J=° 

n-l-j f[(n-i-2j) 
i = l 

and 

L^ 
dx> 

•V„(x) 
L(«-fc)/2j 

= I -^-(n-Af[(n-i + l-2j) 

(»>1) 

(«>1) 

(6.1) 

(6.2) 

(with F^k) = 0 for k > 0 and Z ^ = 0 for k > 1), seems to be very interesting and will be the goal of 
a future work. In this section we confine ourselves to offering some conjectures about the prop-
erties of these sequences. 

Conjecture 1: L(k) = «F„(fc_1). 
Conjecture2: 4*> =(n-k + l)L{k^ ~2(tik}x + F^l)). 

Conjecture 3: F^k) = i£> + F% + *f£f1}. 
Conjecture* i f = ti^ + L^ + k ^ . 

Conjecture 5: F£\ +F%{ = L<-k). 

Conjecture 6: F^k) = lSk) = 0 (mod 2) for k > 2. 

Conjecture 7: I$k) = 0 (modrc) for k > 1. 

Moreover, we leave to the reader the proof of the following: 

4") = 4"-1)=n! (»>1), (6.3) 

i ( r - 2 ) = _ « + L w j ( n > 2 ) , 
2(n-l) ' 

L(.n-3)=Jl+l_n] ( 3 ) 

6(/i-l) 

(6.4) 

(6.5) 
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L(n-4)= " + 10 nl (n>4) (6.6) 
24(/i-2) 

Observe that (6.3)-(6.6) hold also for the minimum admissible value v of n, for which one has 
Ẑ ,0) = Lv. Analogous identities for F^ can be stated whence the validity of Conjecture 1 can be 
checked. More generally, all the conjectures and results presented above can be checked against 
the numerical triangles shown in Figures 1 and 2, which have been obtained by (6.1) and (6.2), 
respectively. It must be noted that F^k) = 0 for k > n - 1 , whereas L^ = 0 for k > n. 

\ k 

0 
1 
2 
3 
4 
5 
6 
7 
8 

0 

0 
1 
1 
2 
3 
5 
8 
13 
21 

1 

0 
1 
2 
5 
10 
20 
38 
71 

2 

0 
2 
6 
18 
44 
102 
222 

3 

0 
6 
24 
84 
240 
630 

4 

0 
24 
120 
480 
1560 

5 

0 
120 
720 
3240 

6 

0 
720 
5040 

7 

0 
5040 

8 

0 

0 

2 
1 
3 
4 
7 
11 
18 
29 
47 

1 

1 
2 
6 
12 
25 
48 
91 
168 

2 

2 
6 
20 
50 
120 
266 
568 

3 

6 
24 
90 
264 
714 
1776 

4 

24 
120 
504 
1680 

5040 

5 

120 
720 
3360 

12480 

6 

720 
5040 

25920 

7 

5040 

40320 

8 

40320 

Fig. 1. Triangle Fn
(k) (0 <n,k< 8) Fig. 2. Triangle L(

n
k) (0<n,k<$) 

As indicated at the end of [4], the theory in this paper can be extended to cover Pell polyno-
mials and numbers, and Pell-Lucas polynomials and numbers. In this case, we first replace x by 2x 
in (1.1) and (1.2), differentiate, and then put x = 1. 
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