ON POINTS WHOSE COORDINATES ARE TERMS OF A LINEAR RECURRENCE*

J. P. Jones
Department of Mathematics, University of Calgary, Calgary, Alberta T2N1N4, Canada

Peter Kiss

Department of Mathematics, Eszterházy Károly College, 3301 Eger Pf. 43, Hungary
(Submitted September 1991)

1. INTRODUCTION

Let $R=\left\{R_{n}\right\}_{n=0}^{\infty}$ be a second-order recurrent sequence (generalized Fibonacci sequence) of integers defined by

$$
R_{n}=A R_{n-1}-B R_{n-2} \quad(\text { for } n>1),
$$

where the initial terms are $R_{0}=0, R_{1}=1$, and A and B are fixed nonzero integers. Let α and β be the roots of the characteristic polynomial $x^{2}-A x+B$. We will assume that the discriminant $D=A^{2}-4 B>0$ and D is not a perfect square. From this, it follows that the sequence R is not degenerate, i.e., α / β is not a root of unity. In this case, α and β are two irrational real numbers and $|\alpha| \neq|\beta|$, so we can suppose that $|\alpha|>|\beta|$. Also, $0<\beta$ iff $0<A \cdot B$. And $0<\beta<1$ holds iff $0<B(A-B-1)$.

It is well known that the terms of R can be given by

$$
\begin{equation*}
R_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{D}} . \tag{1}
\end{equation*}
$$

Furthermore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{R_{n+1}}{R_{n}}=\alpha \tag{2}
\end{equation*}
$$

(see, e.g., [3] or [6]).
Limit (2) implies that α can be approximated by the rational numbers R_{n+1} / R_{n}. The second author, P. Kiss [5], proved that when $B=1$ this approximation is good in the sense that

$$
\left|\alpha-\frac{R_{n+1}}{R_{n}}\right|<\frac{1}{c \cdot R_{n}^{2}}
$$

holds for some c and infinitely many n.
It was also proved in [5] that this inequality holds for infinitely many n only when $|B|=1$.
In this paper the points $P_{n}=\left(R_{n}, R_{n+1}\right)$ will be considered from a geometric point of view, as points on the Euclidean plane. G. E. Bergum [1] and A. F. Horadam [2] showed that the points $P_{n}=(x, y)$ lie on the conic section $B x^{2}-A x y+y^{2}+e B^{n}=0$, where $e=A R_{0} R_{1}-B R_{0}^{2}-R_{1}^{2}$, and

[^0]the initial terms R_{0} and R_{1} are not necessarily 0 and 1 . In their treatment of this equation, they showed that in the case $|B|=1$, when the conic is a hyperbola, the asymptotes of the hyperbola are the lines $y=\alpha x$ and $y=\beta x$. This corresponds to limit (2). For the Fibonacci sequence, when $A=1$ and $B=-1$, C. Kimberling [4] characterized those conics satisfied by infinitely many Fibonacci lattice points $(x, y)=\left(F_{m}, F_{n}\right)$.

In this paper we again investigate the geometric properties of P_{n} in both the two- and threedimensional cases.

2. THE TWO-DIMENSIONAL CASE

Let us consider the points $P_{n}=\left(R_{n}, R_{n+1}\right), n=0,1,2, \ldots$, on the plane whose coordinates are consecutive elements of the sequence R. Then (2) shows that the slope of the vector $O P_{n}$ tends to α. But it is not obvious that the points P_{n} approach the line $y=\alpha x$, as $n \rightarrow \infty$. The following theorem shows that this is the case, however.

Theorem 1: Let d_{n} denote the distance from the point $P_{n}=\left(R_{n}, R_{n+1}\right)$ to the line $y=\alpha x$. Then $\lim _{n \rightarrow \infty} d_{n}=0$ if and only if $|\beta|<1$.

Proof: The distance $d_{x_{0}, y_{0}}$ from a point $\left(x_{0}, y_{0}\right)$ to the line $y=\alpha x$ is given by

$$
\begin{equation*}
d_{x_{0}, y_{0}}=\left|\frac{\alpha x_{0}-y_{0}}{\sqrt{\alpha^{2}+1}}\right| \text {, } \tag{3}
\end{equation*}
$$

so, using (1), we have

$$
\begin{equation*}
d_{n}=\left|\frac{\alpha R_{n}-R_{n+1}}{\sqrt{\alpha^{2}+1}}\right|=\left|\frac{\frac{\alpha^{n+1}-\beta^{n} \alpha}{\alpha-\beta}-\frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta}}{\sqrt{\alpha^{2}+1}}\right|=\frac{|\beta|^{n}}{\sqrt{\alpha^{2}+1}} \tag{4}
\end{equation*}
$$

from which the theorem follows.
Remark: $|\beta|<1$ holds when $|B+1|<|A|$.
This theorem implies that the points P_{n} converge to the line $y=\alpha x$ if $|\beta|<1$, but not necessarily that these lattice points P_{n} are the nearest (in the sense of Theorem 2) lattice points to $y=\alpha x$ in all cases. For, let $d_{x, y}$ denote the distance between the lattice point (x, y) and the line $y=\alpha x$, and let d_{n} be the distance mentioned in the theorem. We prove

Theorem 2: For integers u, v, denote by $d_{u, v}$ the distance from the lattice point (u, v) to the line $y=\alpha x$ and let d_{n} be the distance defined in Theorem 1. Then when $|B|=1$, there is no lattice point (x, y) such that $d_{x, y} \leq d_{n}$ and $|x|<\left|R_{n}\right|$. Furthermore, for sufficiently large n, this holds if and only if $|B|=1$.

Proof: First suppose $|B|=1$. In this case, obviously, $|\beta|<1$ and α is irrational. Assume that for some n there is a lattice point (x, y) such that $d_{x, y} \leq d_{n}$ and $|x|<\left|R_{n}\right|$. Then, by (3) and
(4), $|\alpha x-y| \leq|\beta|^{n}$ follows. From this, using (1) and the fact that $|\alpha \beta|=|B|=1$, we obtain the inequalities

$$
\begin{equation*}
\left|\alpha-\frac{y}{x}\right| \leq \frac{|\beta|^{n}}{|x|}=\frac{1}{|\alpha|^{n}|x|}=\frac{\left|1-(\beta / \alpha)^{n}\right|}{\sqrt{D} \cdot\left|R_{n} x\right|}<\frac{\left|1-(\beta / \alpha)^{n}\right|}{\sqrt{D} \cdot x^{2}} . \tag{5}
\end{equation*}
$$

In [5] it was proved that if $|B|=1$, and p, q are integers such that $(p, q)=1$ and

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{\sqrt{D} \cdot q^{2}}
$$

then p / q has the form $p / q=R_{i+1} / R_{i}$ for some i. The proof also shows that (5) holds only if $x=R_{i}$ and $y=R_{i+1}$ for some i, if n is large enough. So $x=R_{i}$ is a term of the sequence R. The sequence R is a nondegenerate one with $D>0$ and $|B|=1$. So it can easily be seen that $\left|R_{t}\right|$, $\left|R_{t+1}\right|, \ldots$, is an increasing sequence if t is sufficiently large. Furthermore, by (4), $d_{k}>d_{j}$ if $k<j$. Thus, $i<n$ and $d_{i}>d_{n}$ follows, which contradicts $d_{i}=d_{x, y} \leq d_{n}$. So the first part of the theorem is proved.

To complete the proof, we have to prove that if $|B|>1$, then there are infinitely many pairs of lattice points (x, y) such that $d_{x, y}<d_{n}$ and $|x|<\left|R_{n}\right|$ for any sufficiently large n.

Suppose $|B|>1$. If $|\beta|<1$, then, by (4), $d_{n} \rightarrow \infty$ as $n \rightarrow \infty$, so there are lattice points (x, y) such that $d_{x, y}<d_{n}$ and $|x|<\left|R_{n}\right|$ for any sufficiently large n.

If $|\beta|=1$, then d_{n} is a constant and there are infinitely many points (x, y) such that $d_{x, y} \leq d_{n}$ and $|x|<\left|R_{n}\right|$ for some n, since $\left|R_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$.

If $|\boldsymbol{\beta}|<1$, then by (4) and $|B|>1$, we have

$$
\begin{equation*}
\left|\alpha-\frac{R_{n+1}}{R_{n}}\right|=\frac{|\beta|^{n}}{\left|R_{n}\right|}=\frac{|B|^{n}\left|1-(\beta / \alpha)^{n}\right|}{\sqrt{D} \cdot R_{n}^{2}}>\frac{Q}{R_{n}^{2}} \tag{6}
\end{equation*}
$$

for any fixed $Q>0$ if n is sufficiently large. In this case, the roots α, β are irrational numbers since, if the roots of the polynomial $x^{2}-A x+B$ are rational, then they are integers; so $0<|\beta|<1$ would be impossible. It is known that if $r_{k}=y / x$ is a convergent of the continued fraction expansion of α, then

$$
\begin{equation*}
\left|\alpha-\frac{y}{x}\right|<\frac{1}{2|x|^{2}} . \tag{7}
\end{equation*}
$$

Let y, and hence x, be large enough and let the index n be defined by $\left|R_{n-1}\right| \leq|x|<\left|R_{n}\right|$. From (3), (4), (6), and (7), we obtain the inequalities

$$
d_{n}>\frac{Q}{\left|R_{n}\right| \cdot \sqrt{\alpha^{2}+1}} \text { and } d_{x, y}<\frac{1}{2|x| \sqrt{\alpha^{2}+1}} .
$$

But, by (1),

ON POINTS WHOSE COORDINATES ARE TERMS OF A LINEAR RECURRENCE

$$
\frac{Q}{\left|R_{n}\right|}=\frac{Q}{\left|R_{n-1} \alpha\right|\left(1-(\beta / \alpha)^{n}\right) /\left(1-(\beta / \alpha)^{n-1}\right)}>\frac{1}{2\left|R_{n-1}\right|} \geq \frac{1}{2|x|}
$$

and so $d_{x, y}<d_{n}$ with $|x|<\left|R_{n}\right|$, which completes the proof of the theorem.
Lastly, we give equations that are satisfied by the lattice points (R_{n}, R_{n+1}).
Theorem 3: All lattice points $(x, y)=\left(R_{n}, R_{n+1}\right)$ satisfy one of the equations

$$
\text { (i) } y=\alpha x+c(x) \cdot|x|^{\delta} \text { or (ii) } y=\alpha x-c(x) \cdot|x|^{\delta} \text {, }
$$

where $\delta=\log |\beta| / \log |\alpha|$ and $c(x)$ is a function such that $\lim _{x \rightarrow \infty} c(x)=\sqrt{D}^{\delta}$.
Remark: This shows that the sequence of lattice points $\left(R_{n}, R_{n+1}\right)$ tends to the line $y=\alpha x$ only if $\delta<0$, i.e., iff $|\boldsymbol{\beta}|<1$, as proved in Theorem 1.

Proof: By (1), we have

$$
\begin{equation*}
R_{n+1}=\alpha \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}+\frac{\alpha \beta^{n}-\beta^{n+1}}{\alpha-\beta}=\alpha R_{n}+\beta^{n} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|R_{n}\right|=\frac{|\alpha|^{n}}{\sqrt{D}}\left(1-(\beta / \alpha)^{n}\right) . \tag{9}
\end{equation*}
$$

From (9), we have $n=\frac{\log \left|R_{n}\right|+\log \sqrt{D}-\varepsilon_{n}}{\log |\alpha|}$ where $\varepsilon_{n}=\log \left(1-(\beta / \alpha)^{n}\right)$ and $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$ since $|\beta / \alpha|<1$. This implies that

$$
\begin{equation*}
\beta^{n}= \pm \exp \left\{\frac{\log |\beta| \cdot \log \left|R_{n}\right|}{\log |\alpha|}+\frac{\log |\beta| \cdot \log \sqrt{D}}{\log |\alpha|}-\frac{\varepsilon_{n} \cdot \log |\beta|}{\log |\alpha|}\right\}= \pm\left|R_{n}\right|^{\delta} \cdot \sqrt{D}^{\delta_{n}} \tag{10}
\end{equation*}
$$

where $\delta=\log |\beta| / \log |\alpha|$ and

$$
\begin{equation*}
\delta_{n}=\frac{\log |\beta|}{\log |\alpha|}-\frac{\varepsilon_{n} \cdot \log |\beta|}{\log \sqrt{D} \cdot \log |\alpha|} \rightarrow \delta \text { as } n \rightarrow \infty, \tag{11}
\end{equation*}
$$

since $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$.
From (8), (10), and (11), the theorem follows.
Remark: The lattice points (R_{n}, R_{n+1}) safisfy (i) for every n if $\beta>0$. If $\beta<0$, then the lattice points satisfy alternately (i) and (ii).

3. THE THREE-DIMENSIONAL CASE

Now we consider the three-dimensional vectors (R_{n}, R_{n+1}, R_{n+2}). Since by (1),

$$
\frac{R_{n+2}}{R_{n}}=\frac{\alpha^{n+2}-\beta^{n+2}}{\alpha-\beta}=\alpha^{2} \frac{\left(1-(\beta / \alpha)^{n+1}\right)}{1-(\beta / \alpha)^{n}} \rightarrow \alpha^{2}, \text { as } n \rightarrow \infty,
$$

$R_{n+1} / R_{n} \rightarrow \alpha$, as $n \rightarrow \infty$, by (2), and

$$
\left(R_{n}, R_{n+1}, R_{n+2}\right)=R_{n}\left(1, \frac{R_{n+1}}{R_{n}}, \frac{R_{n+2}}{R_{n}}\right)
$$

That is, the direction of the vectors $\left(R_{n}, R_{n+1}, R_{n+2}\right)$ tends to the direction of the vector $\left(1, \alpha, \alpha^{2}\right)$. However, the sequence of the lattice points $P_{n}=\left(R_{n}, R_{n+1}, R_{n+2}\right)$ does not always tend to the line passing through the origin and parallel to the vector ($1, \alpha, \alpha^{2}$). We will prove the analog of Theorem 1.

Theorem 4: let L be a line defined by $x=t, y=\alpha t, z=\alpha^{2} t, t \in \mathbb{R}$. Furthermore, let d_{n} be the distance from the point $\left(R_{n}, R_{n+1}, R_{n+2}\right), n=0,1,2, \ldots$, to the line L. Then $\lim _{n \rightarrow \infty} d_{n}=0$ if and only if $|\beta|<1$.

Proof: It is not difficult to show that the distance from the point $\left(x_{0}, y_{0}, z_{0}\right)$ to the line L is

$$
\begin{equation*}
d_{x_{0}, y_{0}, z_{0}}=\sqrt{\frac{\left(x_{0} \alpha^{2}-z_{0}\right)^{2}+\left(x_{0} \alpha-y_{0}\right)^{2}+\left(y_{0} \alpha^{2}-z_{0} \alpha\right)^{2}}{1+\alpha^{2}+\alpha^{4}}} \tag{12}
\end{equation*}
$$

This notation is necessary for Theorem 5 .
By (12) and (1), we have

$$
\begin{align*}
d_{n} & =\sqrt{\frac{\left(\beta^{n+2}-\alpha^{2} \beta^{n}\right)^{2}+\left(\beta^{n+1}-\alpha \beta^{n}\right)^{2}+\left(\alpha \beta^{n+2}-\alpha^{2} \beta^{n+1}\right)^{2}}{(\alpha-\beta)^{2}\left(1+\alpha^{2}+\alpha^{4}\right)}} \\
& =|\beta|^{n} \sqrt{\frac{(\alpha+\beta)^{2}+1+(\alpha \beta)^{2}}{1+\alpha^{2}+\alpha^{4}}}=|\beta|^{n} \sqrt{\frac{A^{2}+B^{2}+1}{1+\alpha^{2}+\alpha^{4}}} \tag{13}
\end{align*}
$$

where we have used $\alpha+\beta=A$ and $\alpha \beta=B$ since α and β are the zeros of the polynomial $x^{2}-A x+B$. From this, the theorem follows.

Theorem 2 can also be generalized to the three-dimensional case, i.e., to state that the lattice points $\left(R_{n}, R_{n+1}, R_{n+2}\right)$ are the nearest lattice points to the line L iff $|B|=1$.

Theorem 5: Let L be the line defined in Theorem 4. Let d_{n} and $d_{x, y, z}$ be the distances defined in Theorem 4 and its proof. Then, for sufficiently large n, there is no lattice point (x, y, z) such that $d_{x, y, z} \leq d_{n}$ and $|x|<\left|R_{n}\right|$ if and only if $|B|=1$.

Proof: Suppose $|B|=1$. Then, since $0<D=A^{2}-4 B, \alpha$ is irrational because $A^{2} \pm 4$ is not a perfect square.

Let (x, y, z) be a lattice point such that

$$
\begin{equation*}
d_{x, y, z} \leq d_{n} \tag{14}
\end{equation*}
$$

for some n and $|x|<\left|R_{n}\right|$. By Theorem $4 d_{x, y, z}<\varepsilon$ follows for any $\varepsilon>0$ if n is sufficiently large. But then, by (12), $\left|x \alpha^{2}-z\right|,|x \alpha-y|$, and $\left|y \alpha^{2}-z \alpha\right|$ are sufficiently small. If $|x \alpha-y|$ is a small number then, since $\alpha^{2}=A \alpha-B,\left|x \alpha^{2}-z\right|=|A x \alpha-(z+B x)|$ can be small only if $z+B x=A y$, i.e., only if $z=A y-B x$. In this case

$$
\left|x \alpha^{2}-z\right|=A \cdot|x \alpha-y| \text { and }\left|y \alpha^{2}-z \alpha\right|=|(z-A y) \alpha+B y|=|B| \cdot|x \alpha-y|
$$

are also small. Thus, from (12), (13), and (14),

$$
d_{x, y, z}=\sqrt{\frac{A^{2}+B^{2}+1}{1+\alpha^{2}+\alpha^{4}}} \cdot|x \alpha-y| \leq|\beta|^{n} \sqrt{\frac{A^{2}+B^{2}+1}{1+\alpha^{2}+\alpha^{4}}}
$$

and so, using $|x|<\left|R_{n}\right|$ and $|\alpha \beta|=|B|=1$, we get

$$
\left|\alpha-\frac{y}{x}\right| \leq \frac{|\beta|^{n}}{|x|}=\frac{1}{|\alpha|^{n}|x|}=\frac{1-(\beta / \alpha)^{n}}{\left|R_{n}\right| \cdot \sqrt{D} \cdot|x|}<\frac{1-(\beta / \alpha)^{n}}{\sqrt{D} \cdot|x|^{2}} .
$$

From this, as above, we obtain $x=R_{i}, y=R_{i+1}$, and $z=A y-B x=R_{i+2}$ for some natural number i, if n is sufficiently large. Thus, $d_{x, y, z}=d_{i}$. But by (13), $d_{k}<d_{n}$ only if $k>n$, so $i \geq n$ and $|x|=$ $\left|R_{i}\right| \geq\left|R_{n}\right|$, which contradicts the assumption $|x|<\left|R_{n}\right|$, since the sequence $\left|R_{n}\right|$ is ultimately increasing.

To complete the proof, we have to show that in the case $|\beta|<1$ there are infinitely many lattice points (x, y, z) for which $d_{x, y, z} \leq d_{n}$ and $|x|<\left|R_{n}\right|$ for some n. Such points trivially exist by (13), when $|\beta|>1$ or when $|\beta|=1$, so we can suppose that $|\beta|<1$.

Suppose $|B|>1$ and $|\beta|<1$. In this case α is irrational. Let $r=y / x$ be a convergent of the continued fraction expansion of α and let z be an integer defined by $z=A y-B x$. Then, by the elementary properties of continued fraction expansions of irrational numbers, using also the fact that $\alpha^{2}=A \alpha-B$, we have

$$
\begin{aligned}
& |x \alpha-y|=x\left|\alpha-\frac{y}{x}\right|<\frac{2}{2|x|}, \\
& \left|x \alpha^{2}-z\right|=|A x \alpha-(z+B x)|=|A x \alpha-A y|=|A x| \cdot\left|\alpha-\frac{y}{x}\right|<\frac{|A| \mid}{2|x|},
\end{aligned}
$$

and

$$
\left|y \alpha^{2}-z \alpha\right|=|(z-A y) \alpha+B y|=|B x| \cdot\left|\alpha-\frac{y}{x}\right|<\frac{|B|}{2|x|} .
$$

This, together with (12), implies the inequality

$$
\begin{equation*}
d_{x, y, z}<\frac{1}{2|x|} \cdot \sqrt{\frac{A^{2}+B^{2}+1}{1+\alpha^{2}+\alpha^{4}}}=\frac{c}{2|x|}\left(\text { for } c=\sqrt{\frac{A^{2}+B^{2}+1}{1+\alpha^{2}+\alpha^{4}}}\right) . \tag{15}
\end{equation*}
$$

Let n be a natural number defined by $\left|R_{n-1}\right| \leq|x|<\left|R_{n}\right|$, For this n, by (13) and (15), we have

$$
\begin{aligned}
d_{n} & =|\beta|^{n} \sqrt{\frac{A^{2}+b^{2}+1}{1+\alpha^{2}+\alpha^{4}}}=\frac{|B|^{n}}{|\alpha|^{n}} \cdot c \\
& =\frac{|B|^{n}}{|\alpha|^{n-1}} \cdot \frac{c}{|\alpha|}=\frac{1}{\left|R_{n-1}\right|} \cdot \frac{c\left(1-(\beta / \alpha)^{n-1}\right)|B|^{n}}{|\alpha| \cdot \sqrt{D}}>\frac{c}{2|x|}>d_{x, y, z}
\end{aligned}
$$

if x and hence n is large enough, since $|B|>1$. This shows that, for any lattice point (x, y, z) defined as above, there is an n such that $d_{x, y, z}<d_{n}$ and $|x|<\left|R_{n}\right|$. This completes the proof.

Lastly we prove the three-dimensional analog of Theorem 3.
Theorem 6: The coordinates of the lattice points $(x, y, z)=\left(R_{n}, R_{n+1}, R_{n+2}\right)$ satisfy the system of equations

$$
\begin{aligned}
& x=t \\
& y=\alpha t+c(t)|t|^{\delta} \quad \text { or } \quad y=\alpha t-c(t)|t|^{\delta} \\
& z=\alpha^{2} t+A \cdot c(t)|t|^{\delta} \quad \text { or } \quad z=\alpha^{2} t-A \cdot c(t)|t|^{\delta}
\end{aligned}
$$

where $\delta=\log |\beta| / \log |\alpha|$ and $c(t)$ is a real-valued function for which $\lim _{t \rightarrow \infty} c(t)=\sqrt{D}^{\delta}$.
Proof: By (1), it can easily be shown that

$$
\begin{equation*}
R_{n+2}=\alpha^{2} R_{n}+(\alpha+\beta) \beta^{n}=\alpha^{2} R_{n}+A \beta^{n} . \tag{16}
\end{equation*}
$$

From (8), (10), (11), and (16), the theorem follows.

REFERENCES

1. G. E. Bergum. "Addenda to Geometry of a Generalized Simson's Formula." Fibonacci Quarterly 22.1 (1984):22-28.
2. A. F. Horadam. "Geometry of a Generalized Simson's Formula." Fibonacci Quarterly 20.2 (1982):164-68.
3. D. Jarden. Recurring Sequences. Jerusalem: Riveon Lematematika, 1958.
4. C. Kimberling. "Fibonacci Hyperbolas." Fibonacci Quarterly 28.1 (1990):22-27.
5. P. Kiss. "Diophantine Approximative Properties of the Second Order Linear Recurrences." Period. Math. (Hungary), 11 (1980):281-87.
6. E. Lucas. "Theorie des fonctions numériques simplement periodiques." American J. Math. 1 (1878):184-240, 289-321.

AMS number: 11B37

[^0]: * Research supported partially by the Hungarian National Foundation for Scientific Research (Grant No. 1641) and the National Scientific and Engineering Research Council of Canada.

