CIRCULAR SUBSETS WITHOUT q-SEPARATION AND POWERS OF LUCAS NUMBERS

John Konvalina and Yi-Hsin Liu
Department of Mathematics and Computer Science, University of Nebraska at Omaha, Omaha, NE 68182-0243
(Submitted September 1991)

Let n, q, k be integers, $n \geq 1, q \geq 1, k \geq 0$. Consider $1,2, \ldots, n$ displayed in a circle so that n follows 1. Then the integers $i, j(1 \leq j<j \leq n)$ are said to be (circular) q-separate if $i+q=j$ or $j+q-n=i$. Let $C_{q}(n, k)$ denote the number of k-subsets of $\{1,2, \ldots, n\}$ without q-separation (no two integers in the subset are q-separate). The (total) number of subsets without q-separation is $C_{q}(n)=\sum_{k \geq 0} C_{q}(n, k)$. In this note we prove that

$$
\begin{equation*}
C_{q}(n)=L_{m}^{d}, \text { where } d=\operatorname{gcd}(n, q), m=n / d \tag{1}
\end{equation*}
$$

as follows. Partition the cycle $\{1,2, \ldots, n\}$ into d disjoint cycles S_{i} (reduced modulo n):

$$
\begin{equation*}
S_{i}=\{i, i+q, i+2 q, \ldots, i+(m-1) q\}, 1 \leq i \leq d . \tag{2}
\end{equation*}
$$

The cardinality of each S_{i} is m, and $C_{q}(n)$ is equal to the product of the number of subsets of each S_{i} not containing a pair of consecutive elements. Thus, $C_{q}(n)=\left(C_{1}(m)\right)^{\mu}$. But it is an old result that $C_{1}(n)=L_{n}$, since $C_{1}(n)$ can also be interpreted as the number of circular subsets without adjacencies (1 and n are adjacent).

The case $q=2$ of (1) is

$$
C_{2}(n)=\left\{\begin{array}{ll}
L_{n / 2}^{2} & \text { if } n \text { is even, } \\
L_{n} & \text { if } n \text { is odd, }
\end{array} \quad\right. \text { given in [2]. }
$$

It should be noted that (1) is the special case $x=1$ of the polynomial identity

$$
\begin{gather*}
\sum_{k \geq 0} C_{q}(n, k) x^{k}=\left((\alpha(x))^{m}+(\beta(x))^{m}\right)^{d} \tag{3}\\
d=\operatorname{gcd}(n, q), m=n / d, \alpha(x)+\beta(x)=1, g a(x) \beta(x)=-x
\end{gather*}
$$

established in [2], where the proof involves the same partitioning (2). In the special case $x=2$,
(3) becomes $\Sigma^{k \geq 0} C_{q}(n, k) 2^{k}=\left(2^{m}+(-1)^{m}\right)^{d}, d=\operatorname{gcd}(n, q), m=n / d$.

This has a pleasing combinatorial interpretation, namely, it is the number of 2 -colored circular subsets of $\{1,2, \ldots, n\}$ without q-separation.

REFERENCES

1. J. Konvalina \& Y.-L. Liu. "A Combinatorial Interpretation of the Square of a Lucas Number." Fibonacci Quarterly 29.3 (1991):268-70.
2. W. O. J. Moser. "The Number of Subsets without a Fixed Circular Distance." J. Combin. Theory A 43 (1986):130-32.
AMS number: 05A15
