THE CONNECTIVITY OF A PARTICULAR GRAPH

Marc S. Ordower*
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
(Submitted November 1991)

Let G be a graph with vertex set $N=\{1,2,3, \ldots\}$ and edge set E where $\{a, b\} \in E$ if and only if $a^{2}+b^{2}=c^{2}$ for some c in N. From the standard parameterization of Pythagorean triples, it is easy to deduce that 1 and 2 are isolated vertices and that 3 and 4 together comprise a connected component of G. Our result concerns the connectivity of the rest of the graph.

Theorem: $N \backslash\{1,2,3,4\}$ is connected in the graph G.
Proof: One may verify that $8,15,20,21,72,30,16$ is a path in G between 8 and 16 . Note also that $\{a, b\} \in E$ implies that $\{c a, c b\} \in E$ for all $c \in N$. Therefore, by multiplying the elements in the above path by the appropriate power of 2 , we find a path in G between 2^{k} and 2^{k+1} for all $k \geq 3$.

Next, given $n \geq 5$, we recursively find a path $P_{n}: n=n_{0}, n_{1}, \ldots, n_{r}=2^{k}$ for some $k \geq 3$ according to the following algorithm: factor $n_{i}=p_{i} m_{i}$ where p_{i} is the largest prime factor of n_{i}; if $p_{i}=2$ then we are done; otherwise, set $n_{i+1}=\frac{p_{i}^{2}-1}{2} \cdot m_{i}$.

We make two observations to verify that this algorithm generates the desired path. First, note that

$$
n_{i}^{2}+n_{i+1}^{2}=\left(p_{i} m_{i}\right)^{2}+\left(\frac{p_{i}^{2}-1}{2} \cdot m_{i}\right)^{2}=\left(\frac{p_{i}^{2}+1}{2} \cdot m_{i}\right)^{2}
$$

implies that $\left\{n_{i}, n_{i+1}\right\} \in E$.
Second, note that all prime factors of $\frac{p^{2}-1}{2}(p$ an odd prime) are strictly less than p. Hence, for all $i \in\{1,2, \ldots, r-1\}$, if $n_{i}=p_{i}^{s_{i}} m_{i}^{\prime}$ where $\operatorname{gcd}\left(p_{i}, m_{i}^{\prime}\right)=1$, then $p_{i,}=p_{i+1}=\cdots p_{i+s_{i}-1}>p_{i+s_{i}}$. Therefore, the algorithm terminates after a finite number of steps.

Corollary: If H is the graph with vertex set N and edge set E^{\prime} where $\{a, b\} \in E^{\prime}, a>b$ if and only if $a^{2}-b^{2}=c^{2}$ for some $c \in N$, then $N \backslash\{1,2\}$ is connected.

Proof: One notes that, for all $\{a, b\} \in E$, there exists a $c \in N$ such that $\{a, c\},\{b, c\} \in E^{\prime}$. Also note that $\{3,5\},\{4,5\} \in E^{\prime}$.

REFERENCE

1. J. A. Bondy \& U. S. R. Murty. Graph Theory with Applications. New York: Elsevier; London: Macmillan, 1976.
AMS number: 11D16
[^0]
[^0]: *Supported by an NSERC undergraduate research award and Simon Fraser University.

