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INTRODUCTION 
A palindrome is a finite sequence of positive integers which is unchanged when written in 

reverse order. Sometimes such sequences are referred to as symmetric (see [3] and [5]). The 
objective of this paper is to show how some simple properties of palindromes can be used to 
obtain results in elementary number theory. We give new elementary proofs of known results and 
what appear to be some new results. 

In §1 we prove some elementary properties of palindromes and their associated finite contin-
ued fractions. In §2 we apply the properties established in §1. The reader will note that the 
application of Proposition 4 of §1 constitutes a method for obtaining the results of §2. 

1. ELEMENTARY PROPERTIES OF PALINDROMES 

Let n be a nonnegative integer. We call a sequence of positive integers a = {a(0), a(l), ..., 
a(n)} of length /i + l a palindrome if a(i) = a(n-i) for 0 < i < n. 

Example: Let n be a nonnegative integer and define the sequence a by 

for 0 < / <n. The condition for a to be a palindrome is the well-known binomial coefficient 
identity (»)=(/_,.). 

We are especially interested in sequences of positive integers generated by the division 
algorithm (see [1]). Explicitly, if P and Q are relatively prime integers such that 1 < Q < P. Then 
(see [1], p.325) P and Q uniquely determine two sequences of positive integers a and r as 
follows: 

P = a(0)Q + r(0), 0 < r(0) < g; 
0 = a(l)r(O) + r(l), 0<r(l)<r(0); 

r(i - 2) = a(i)r(i -1) + r(/), 0 < r(i) < r(i -1); (1) 

r(n -3) = a(n - \)r(n -2) + r(n-l\ 1 = r(n -1) < r(n - 2); 
r(n -2) = a(n)r(n -1) = a(n). 

Since a{ri)-r(n-2)> 1, we have a(n)>2. We call a the sequence of quotients and r the 
sequence of remainders determined by the pair (P, Q). For any integer c we define 

The equations in (1) are equivalent to 
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A r(i-\)\ r{i-2)\ fQY0<i<n 

where r(-2) = P, r ( - l ) = <2, and r(n) = 0. Hence 

Aa(0)Aa(l) ''' Aa(n)[()j ~ \^QI ( 2 ) 

Let a be any sequence of positive integers of length n +1. If we define 

Pt Q 
P 0 ) ~ (/) «0'-l) °" ^«(0)' w) 

then it is known (see [6]) that 

P / /a=[a(0) ,a( l ) , . . . ,a (w)]=a(0) + -
a(l) + -

a(2) + -. 1 (4) 

a(i-l)+ l 

a(i) 

a finite simple continued fraction. The elementary properties of continued fractions that we need 
can be found in [1]. In what follows we denote the greatest integer function by [ ]. 

Lemma 1: Let a = {a(0), a(l),..., a(n)} be a sequence of positive integers of length w + l> 2. 
If 

A A •. • A -1 n &" ) 
^ain^ain-l) Az(0) ~ ^p^ Qn__J> 

then Pn I Qn is not an integer and \Pn IQJ = a(0) 

/Vw/ ' Using (3) and (4), we have Pn/Q„ = a(0) +1 / [a(l), a(2),..., a(w)]. So we need 
only show that [a(l), a(2),..., a(w)]> 1 to obtain the result. To that end, we note that because 
w + 1 >2, [a(l),a(2), . . . ,a(w)]>a(2)> 1. Thus, 

K l ) , a(2),..., a(/i)] = a(l) + l/[a(2), a(3),..., a(n)]> a(l). 

Now, since a(l) > 1, the conclusion follows. D 
The following Lemma, accounting for a difference in notation, can be found as an exercise in 

[6, p. 251]. Since we use it in an essential way, we provide a proof for the sake of completeness. 

Lemma 2: If a and fi are two sequences of positive integers of lengths n + l and /w + 1, respec-
tively, then 

Aa(n)Aa(n-l) • • • 4z(0) = Af3(m)Ap(m-l) ''' A0(O) (5) 

if and only if n - m and a = /3. 

Proof: We will proceed by induction on the length of the sequence a. If n +1 = 1, 
thenw = 0 and 
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a ( 0 ) *)~A A -A -(P» 
Qn-1 

Thus, a(0) = Pm I Qm is an integer. So, by Lemma 1, m < 1. Now detffj *1 ] = - 1 , for any integer 
c, where det( ) is the determinant. So, if m = 1, we would have -1 = det(^( 0 ) ) = d e t ( ^ 1 ) ^ 0 ) ) 
= 1. Thus, m = 0 and a(0) = /?(0) 

Now assume our result is true when the length of a is less than n +1, with w > 1. We first 
note that m > 1. Because, if m = 0, we argue as above, with the roles of a and /? interchanged, 
and conclude that n = 0. Multiplying both sides of (5) on the left by 4 , we have 

A A --• A - A A ...A - I m+l ^m 

Because (a(0), a(l),..., a(w), 1} and {j3(0),fi(l),...,fi(jn), 1} both have length bigger than 2, we 
have by Lemma 1 that a(0) = [[ i^+2 I Qm+2 1 = A0)- Finally, multiplying both sides of (5) on the 
right by the inverse of Aa^, we have 

Aa(n)Aa(n-\) "* 4z ( l ) ~ ^J3(m)^j3(m-1) "* ^/?(1)-

Hence, by the induction hypothesis, {a(l), a(2),..., a(n)} = {/?(l),/?(2), ...,/?(m)} and, thus, 
w = mand a = /?. D 

Proposition 1: If a is a sequence of positive integers of length n + l, then a is a palindrome if 
and only if the matrix 

is symmetric. 
Proof: Since each Aa^ is symmetric, the transpose of (6) is 

So by Lemma 2 the result follows. • 

Proposition 2: If a is a palindrome of length n + l and 

A*(w) a(«-l) ""* ̂ a(O) = l p " n " • ( ' ) 

Then 

a2=(- ir (modP„). 
Proof: By Proposition 1, i^_x = Qn. Since the determinant of Aa^ is -1 for all z, we have, 

by taking determinants in (7), (-l)w+1 = PnQn_x - Q? and, thus, Q2 = (-1)" + PnQn_v D 

Now we give an elementary proof of an easy extension of a result which can be found in [3]. 

Proposition 3: Let P and Q be integers such that 1 < Q < P and Q2 = ±1 (mod P). Then there 
exists a palindrome a of length n + l with 

A A . . . /f 
(Q Qn-l) 

where g2 = (-1)" (mod P). Further, a is uniquely determined by P and Q. 
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Proof: Let a be the sequence of quotients in the division algorithm determined by the pair 
(P,Q). Set 

Aa(n)Aa(n-\) " Az(0) ~ I pn Q n \ (8) 

Taking the transpose in (2) we have (l 0)Aa^Aa^n_^ -• Aa^ = (P g). Thus, Pn~P and 

Taking determinants in (8), we have (-1)"+1 = •?„&_, - g 2 and, thus, Pn_xQ = (-1)" + PQ,_V 

Further, because Q2 = ±l (modP), we have 

P„_^- (± l ) ( - l ) "e (modF) . (9) 
Next, because 

A A ---A -1 ^ Pn~l I 
Az(0) Az(l) Aa{n) ~ ]^Q g J ' 

we have PI Pn_x = [ a(n), a(n -1),. . . , a(0)] > a(n). We know, from (1), that a(n) > 2 and, thus, 
Pn_x < P / 2. Now, if Q < P12, then (9) implies that Q = Pn_l. So, by Proposition 1, a is a palin-
drome. 

Suppose P / 2 < g < P. Then 1 < PIQ < 2 and a(0) = [P / g ] = 1. Next, if we multiply both 
sides of (8) on the left by 

AA A-1 -f1 ° 
we have 

Taking the determinant, we have P ( g - Q„_x) -(P- P„-X)Q = (-1)" and, so, 

(P-Q)P„_1-P(P„_l-qn_1) = (-iy+\ 

Hence, (P - g ) ^ = (-1)"+1 (mod P). Because P-Q = -Q (mod P), we have (P - Qf s ±1 
(mod P) and, thus, 

P ^ - - (± l ) ( - l ) " + 1 (P -0 (modP). (10) 

Since P - g < P12 and Pn_x < P12, (10) implies that P - g = P ^ . That is, Q = P - Pn_r and, so, 
by Proposition 1, {a(0), a(l),..., a(n -1), a(w) -1,1} is a palindrome. 

Now we prove uniqueness. Let a be the palindrome constructed above and (3 another of 
length m +1 with 

4Z(H)4Z(«-1) * * * 4z(0) ~\Q Q I anC^ ^(m)^(w-l) ' ' ' 4 (̂0) ~ I g R 

Taking determinants, we have P g ^ - g 2 = (-1)"+1 a n d P P - g 2 = (-If+1. Thus, g 2 ^ ( - l ) " 
(mod P) where, because P > 2, we must have (-1)" = (-l)m. Hence, P(g„_i - P ) = 0 and, thus, 
R - Qn_x. Finally, by Lemma 2, a - /?. D 
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Corollary 1: Let P and Q be integers such that 1< Q < P and Q2 = ±1 (mod P). If a is the 
sequence of quotients in the division algorithm determined by the pair (P, Q), then a or {a(0), 
a(l),.. . , a(n -1), a(ri) -1,1} is a palindrome. 

Proof: It follows from (1) that a{ri) > 2. Further, the palindrome referred to in Propositioin 
3 was shown to be either a or {a(0), a(l),..., a(n -1), a(n) -1,1}. • 

Proposition 4: Let a be a sequence of positive integers of length n +1 and n a nonnegative inte-
ger such that 

^a{n)Aa(n-l) ''' ^a(O) = \ p Q P ^ ^ 

where Q2 = ±1 (mod P) and 1 < 2 < P, with P > 2. Then we have exactly one of the following 
possibilities: 

(a) a is a palindrome and Q2 = (-1)" (mod P). 
(h) a(n) = 1, {a(0), a(l),..., a(n - 2), a(n -1) +1} is a palindrome, and Q2 = (-l)n+l (mod P). 
(c) a(w)>l, {a(0),a(l) , . . . ,a(w-l) ,a(w)-l , l} is a palindrome, and 0 2 = (-l)"+1 (modP). 

Proof: If a(w) > 1, then a is clearly the sequence of quotients in the division algorithm for 
the pair (P,Q). Hence, by Corollary 1, either a or {a(0), a(l),..., a(w-l) , a(w)-l , 1} is a 
palindrome. Now, if a is a palindrome, then by Proposition 2, g2 - (-1)" (modP). Next, if 
{a(0), a(l),. . . , a(n -1), a(n) -1,1} is a palindrome, then multiplying both sides of (11) by 

we have 

AA A -A -( P Q 

So, by Propositions 1 and 2, P - Pn_x = Q and Q2 = (-I)"4"1 (mod P). 
If a(«) = 1, then multiplying both sides of (11) on the left by 

we have 

A A'1 A~l-(l °) 

^a(n-l)+l^a(n-2) ''" 4z(0) ~ I P - P Q-Q \ 0-%) 

So, again, {a(0), a(l),..., a (n -2 ) , a ( ^ - l ) + l} is the sequence of quotients in the division algo-
rithm for the pair (P, Q). Hence, by Corollary 1, {a(0), a(l),..., a(n - 2), a(w -1) +1} or a is a 
palindrome. If w = l, we understand {a(0), a(l),..., a(/?-2), a ( ^ - l ) + l} to be {a(0) + l}. 
Now, if {a(0), a(l),..., a(n-2), oc(n-l) + l} is a palindrome, then (12) and Proposition 2 give 

g 2 ^( - l )" + 1 (modP) . 
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Next, we show that two of these possibilities cannot hold at the same time. Clearly (b) and 
(c) cannot both be true. If (a) and (b) or (a) and (c) hold, then Q2 = (-1)" (mod P) and Q2 = 
(-lf+l (mod P). That is 1 = -1 (mod P), which is impossible since P > 2. D 

If a is a sequence of positive integers of length w + 1, we obtain a sequence a* of length n by 
deleting a(0). Specifically, a*(z) = a(i +1) for 0 <z < n -1. That is, a* = (a(l), a(2),..., a(n)}. 
Further, if a(n) > 1, we form a sequence a* of length w + 1 by deleting a(0) and replacing a(n) 
by {a(w)-l , l}. That is, a* = {a( l ) , . . . , a («- l ) ,a («) - l , 1}, where a*(z) = a(z + l) for 0<z< 
n - 2, a*(w ~ 1) = a ( w ) ~ 1 a n^ cx*(w) = 1. 

Proposition 5: If a and a* are both palindromes, then a(i) = a(0) for 0<i<n. 

Proof: If 0 < i < n-1, then a(z +1) = a,(z) = a„(w - 1 - i ) - a(i). D 

Proposition 6: If a(w) > 1 and both a and a* are palindromes, then we have two possibilities: 
(a) If n is odd, then a(0) = a{ri) - 2 and a(z') = 1 for 1 < i < n ~ 1. 
(&) If w is even, then a(0) = a(w) = c> 1. Further, a(2&-l) = l f o r l < £ < w / 2 and a(2k) = 

c-lforl<k<n/2. 
Proof: If 0 < z < w - 2, then a*(z -1) = a(z) = a(n -z) = a*(w - z -1) = a*(z +1) = a(z + 2). 

Hence, "l=a*(7z) = a*(0) = a(l) = a ( 2 t - l ) for \<k<\nl2l Further, a(2) = a(2Jt) for 
1 < k < \n 12J, where a(2) = a*(l) = a*(w -1) = a(w) - 1 = a(0) - 1 

So, if n is even, we have proved (b). If n is odd, thena((w -1) / 2) = a(n - (n -1) / 2) = 
a((« + l)/2). Since one of ( « - ! ) / 2 and (n + l) /2 is even and the other odd, we must have 
a(i) = 1 for 1 < z < n -1. Further, since 1 = a(2) = a(0) - 1 , we also have a(0) = a{n) = 2. D 

2. APPLICATIONS 
In what follows, we sill prove four propositions. Propositions 7 and 10 are known results 

and we give new elementary proofs. Propositions 8 and 9 are of the same general type as 
Proposition 7 and are apparently new. 

We define a sequence of polynomials as follows: JX(X) = 0, J0(X) = 1 and Jk+1(X) = 
XJk(X) + Jk-i(X) for k > 0 or, equivalently, for & > 1, 

Remark 2: It is easy to see that {Fk = Jr .̂_1(l)|A: > 0} is the sequence of Fibonacci numbers. 

The following is an elementary proof of a result of Owings (see [2]). 

Proposition 7: If P and Q are integers with 1 < Q < P, Q2 = -1 (mod P) and P2 = -1 (mod 0 , 
then there exists an odd integer k such that 

Q = Fk and P = Fk+2, 

where i^ is the kih Fibonacci number. 
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Proof: If Q = 1, then Q2 = -1 (mod P) and P > Q implies that P = 2. Hence, Q = Fl and 

P = P3. Next, if Q = 2, then g2 = - 1 (mod P) implies that P = 5. So Q = F3mdP = F5. 
From now on, we will assume that Q > 2. By Proposition 3 there is a palindrome a of even 

length w +1 such that 

^ ^ ...̂  -fp e 
^ia(«)/1a(»-l) ^a(O) " " I n n 

and Q2 = (-1)" (mod P). We will prove that a* is a palindrome. To that end, we note that 

A A A -( Q P-oc(0)Q 

Since P - a(0)g = P (mod Q) and P2 = -1 (mod 0 , we have that (P - a (O)0 2 = -1 (mod Q). 
Now, because Q > 2, we have by Proposition 4 exactly one of the following possibilities: 

(a) (a(l), a(2),..., a(w)} is a palindrome with ( P - a(O)02 = (-1)""1 ( m o d 0 ; 
(b) a(«) = land{a( l ) , . . . , a ( / i -2) ,a( / i - l ) + l} is a palindrome with ( P - a ( O ) 0 2 =(- ! )" 

(modg); 
fiq) a(#) > 1 and a* = {a(l),..., a(w -1), a(/z) -1,1} is a palindrome with (P - a (O)0 2 = (-1)" 

(modg). 

The case (a) cannot hold since n-\ is even, and the two congruences, P-oc(0)Q = P 
( m o d 0 and P2 = - l ( m o d 0 , imply that l = - l (mod0 . Contradicting that Q>2. Now, 
suppose oc(n) = 1 and {oc(l),..., oc(n - 2), a(n -1) +1} is a palindrome. Since n is odd, it follows 
that n > 2 and, thus, a(n -1) = a(l) = a(n -1) +1 yields a contradiction. Hence, we have shown 
that a{ri) > 1 and a* = {a(l),..., a(n -1), a(n) -1,1} is a palindrome. 

Because a and a* are both palindromes and n is odd, we have, by Proposition 5, that 
a(0) = a(?i) = 2 and a(/) = 1 for 1 < i < n -1. Hence, 

But, from (13) we have 

Aa{n)Aa(n-l) ''' 4x(l) ~ A2 Ax A2. 

1 "u °j _U-2(i) ^-3(i)J-
Hence, 

^ ^ " " ^ - A (J»-iW ^ -2(1)L _f-/n+3(l) -/„+i(l)l 

We have already observed that Fi+1 = JJ(1) for / > 0. Thus, the result is established. • 

Proposition 8: If P and Q are integers with 1 < Q < P, P2 = ±1 (mod Q) and g2 = -(±1) (mod 
P), then there exist integers k > 0 and c > 1 such that .4(c) = Q and .4+1(c) = P. 
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Proof: If Q = 1 then, for any P > 1, we have / 0 (P) = g and ̂ ( P ) = P. Next, if g = 2, then 

Q2 = -(±l)(modP) implies that P = 3 o r P = 5. If P = 3, we have J2(l) = 2 and J3(l) = 3. For 
the case P = 5, we have ,/1(2) = 2 and J2 (2) = 5. 

From now on, we will assume that Q>2. By Proposition 3, there is a palindrome a of 
length n + l such that 

A A -A -(P Q 

where g2 = (-1)" (mod P). We will show that a* is a palindrome. To that end, we note that 

A A A -( Q P-<*(0)Q 
Mn)Aa(n-D ''' 4*(1) " [Q^ Q _ OC^Q^ 

Now, since P - a(0)Q = P (mod Q), it follows that (P - oc(0)Q)2 = -(-1)" (mod Q). Therefore, 
because Q > 2, we have, by Proposition 4, exactly one of the following possibilities: 

(a) «, = {a(l),a(2),...,a(w)} is a palindrome with ( P - a ( O ) 0 2 = (-1)""1 (mod 0 ; 
(b) a(w) = land{a( l ) , . . . ,a (w-2) ,a(w-l) + l} is a palindrome with ( P - a ( O ) 0 2 = (-!)" 

(modg); 
(c) a(w)>land{a(l) , . . . ,a(w- ' l ) ,a(w)-l , l} is a palindrome with ( P - a ( O ) 0 2 =(-1)" 

(modg). 

If either (b) or (c) holds, it follows, by Proposition 3, that(P - a(O)0 2 = (-1)" (mod 0 . Since 
P-a(0)Q^P(modQ) andP2 =-(-l)n (modg), we have (-1)" = - ( - ! ) " ( m o d 0 , but Q>2 
makes tMs impossible. So a* is indeed a palindrome. 

By Proposition 5, a(i) = a(0) = c for 0 < i < n. That is, a = {c, c,..., c). Thus, 

and hence our result. D 
We need another sequence of polynomials as follows: H_X(X) = 0, H0(X) = 1 and, for k > 0, 

#fc+i W = ( * + 1)#* (x) - Hk-i(x)- Equivalently, for k > 1, 

1 Oj -^ k _ , (J f ) -Hk_2(X)) 

Proposition 9: Suppose P and Q are integers with 1 < Q < P, Q2 = 1 (mod P), P2 = 1 (mod 0 , 
and P^Q + 1. Then there exist integers k and c such that Hk(c) = Q and Hk+l(c) = P. 

Proof: By Proposition 3, there exists a Palindrome a of odd length n + l such that 

'P 2 4z(«)4z(#i-i) • • • 4*(0) - \Q g^_i 
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We will prove first that a* is also a palindrome. To that end, we observe that 

A A A -( Q P-a(0)Q } 
^(„)^(„-i) - Aam ~ [Q^ Q-a(0)Q„J 

Now Q > 2 since, otherwise, Q2 = 1 (mod P) implies that P = 3. That is, P = Q + l, a case we 
have excluded. Next, P - a(0)Q = P (mod Q) gives (P - a(0)g)2 = 1 (mod 0 . Now, since 
Q > 2 and (P - oc(0)Q)2 = 1 (mod Q) we have, by Proposition 4, exactly one of the following 
possibilities: 

(a) (a(l), a(2),..., a(n)} is a palindrome and (P - a(0)Q)2 = (-If-1 (mod 0 ; 

(b) a(n) = 1, (a(l), ..., a(« -2 ) , a(«-1) +1} is a palindrome and (P- a (O)0 2 = (-1)" (mod 

0; 
(c) a(n)>l,a* = {a(l),...,a(n-l),a(n)-l,l} is a palindrome and (P-a(O)g) 2 = (-!)" 

(rnodg). 

If (a) were true, we would have (P- oc(0)Q)2 = -1 ( m o d 0 , since « - 1 is odd. However, 
(P - oc(0)Q) = P (mod Q) and P2 = 1 (mod 0 give 1 = -1 (mod 0 , contradicting the conclusion 
that Q > 2. 

Next, if (b) is true and n>2, with a and {a(l),..., a( / i -2) , a(n-l) + l) both palindromes, 
implies that a(n -1) = a(l) = a(« -1) +1, which is clearly impossible. So, if (b) is true, we have 
n - 2 and, thus, a = {1, oc(l), 1}. However, in this case, Q = a(l) +1 and P = a(l) + 2, a case we 
have excluded. Hence, a{ri) > 1 and a* is a palindrome. 

Since a and a* are both palindromes and n is even, we have, by Proposition 6, that a(0) = 
a(n) = c>l,l = a(l) = a(2k-l) for \<k<nl2 and a(2£) = c - l for \<k<nl2. If n = 2, 
then 

^ J ...̂  - ^ ^ -fc+1 -^Y1 °] 
An easy induction on n gives, in general, that 

U ->) 
Now, recalling that (x+x ~^\= {"'^ Z^",(

(x))we h a v e 

A A -A - M ^ -Hnn(X)\(\ 0)_(H„/2+l(c) Hnl2{c)\ 

and thus our result. D 

Remark 3: In the above result c = | P / 0 . Furthermore, by Leme's Theorem (see [4]), 
«<51ogl o(0,andsoA:=«/2<(5/2)log l o(0<(5/2)log l o(P/2) . 

A A - A - f C + 1 -T2)'2' 
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If D is a nonsquare, positive integer, then it is known (see [1]) that 0 = [JD] + J~D has an 
infinite purely periodic continued fraction expansion. Let/? be the smallest period of 0. Our 

notation is 0=[a0, a1?..., a J . We now give an elementary proof of a known result (see [5]). 

Proposition 10: We claim that {ax,a2,..., ap_x} is a palindrome. 

Proof: Set a={a(0),a(l) , . . . ,a(/?)}, where a(i) = alforO<i<p-l and a(p) = a0. 
Setting 

A A ---A -\PP~1 @P~1^ 

we have (see [1], p. 329) 

OP* l+P» 2 
e = [a(0),a(l),...,oc(p-ll9] = - ^ ^ - . 

eQp_i+Qp_2 

Thus, 6 is a root of the quadratic polynomial equation 

f(X) = Qp_,X2 + (Qp_2 - Pp_x)X- Pp_2 = 0. 

However, the minimal polynomial of 0 over the rational numbers is 

m(X) = X2- a(Q)X + (a(0)2 - AD)2 - AD) 14. 

Because m(X) divides the polynomial f(X), we have Qp_2 - Pp_x = -0^(0)2^. That is, 

PP-i = ®(o)qP-i+QP-2 = QP, 
where 

P (? ^ 
2P-i) 

A A • • • A -1 p p 

So, by Proposition 1, a = {a0, a1? . . . , a r l , a0} is a palindrome. Thus, it follows that {a1? ...,ap_{} 
is a palindrome. • 

Remark 4: If P is a positive integer such that P > 1 and P is a product of primes congruent to 1 
modulo 4 or twice such a product, then there exists an integer Q with 1 < Q < P12 and Q2 = -1 
(modP). By Proposition 3, there is a palindrome « e = {a(0), a(l),... , a(w)} of even length 
LQ = n +1 such that P IQ = I>(0), a(l),..., a(n)]. We define the index of P by 

7(P) = min{ZBie}. 

It is clear that for any integer of our type, I(P) = 2 if and only if there is a positive integer m such 
that P = m2 +1. The following seem to be natural questions: 

(1) Are there infinitely many integers P of index /, for / an even integer bigger than 4? 
(2) Let Mbe a positive integer such that M>2. Are there infinitely many primes P, with 

P = \ (mod 4) and I(P)<M1 
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In (1) we have restricted ourselves to I(P) > 4 , because the curious reader will find it easy to 
produce an infinite number of P with I{P) = 4. Further, (2) simply generalizes the question: "Are 
there infinitely many primes of the form m2 +1? 

Remark 5: In Proposition 7 we describe all pairs of positive integers P and Q with P2 = 1 
(mod Q) and Q2 = 1 (mod P). This problem was posed by Tom Cusick of the University of Buf-
falo at a meeting of the Seaway Number Theory Conference in May 1991. We understand that he 
also has a description by a different method. 
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