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PROBLEMS PROPOSED IN THIS ISSUE 

H-490 Proposed by A. Stuparu, Valcea, Romania (corrected) 

Prove that the equation S(x) = p, where/? is a given prime number, has just D((p -1)!) solu-
tions, all of them in between/? and/?! [S(n) is the Smarandache Function: the smallest integer 
such that S(n)\ is divisible by n, and D(n) is the number of positive divisors of/?.] 

H-496 Proposed by Paul S. Bruckman, Edmonds, WA 

Let n be a positive integer > 1 with gcd(«, 10) = 1, and 8 = (5In), a Jacobi symbol. Consider 
the following congruences: 
(1) Fn_5^Q{moAn\ 4 = l(modw); 
(2) FL{n_S) = 0 (mod n) if n = 1 (mod 4), Ll{n_d) = 0 (mod n) if n = 3 (mod 4). 

Composite n which satisfy (1) are called Fibonacci-Lucas pseudoprimes, which is abbreviated as 
"FLUPPS." Composite n which satisfy (2) are called Euler-Lucas pseudoprimes with parameters 
(1, - i ) , abbreviated as "ELUPPS." Prove that FLUPPS and ELUPPS are equivalent. 

H-497 Proposed by Mohammad K. Azarian, University of Evansville9 Evansville9 IN 

Solve the recurrence relation 

* f * x Y 

i n^H + iK., /=0 \^y=0 Xn-i J 

k Y 
= 0, 

where r is any nonzero real number, n > k > 1, and xm ^ 0 for all m. 

H-498 Proposed by Paul S. Bruckman, Edmonds, WA 

Let u = ue = L e, e = 2, 3,... . Show that if u is composite it is both a Fibonacci pseudoprime 
(or "FPP") and a Lucas pseudoprime (or "LPP"). Specifically, show that u = 7 (mod 10), Fu+l = 0 
(mod w), and Lu = \ (mod u). 

1995] 187 



ADVANCED PROBLEMS AND SOLUTIONS 

SOLUTIONS 
Quite Prime 

H-483 Proposed by James Nicholas Boots (deceased) & Lawrence Somer, The Catholic Uni-
versity of America, Washington, D. C 
(Vol 32, no. 1, February 1994) 

Let m > 2 be an integer such that 

4 , ^ 1 (modm). (1) 

It is well known (see [1], p. 44) that if m is a prime, then (1) holds. It has been proved by H. J. A. 
Duparc [3] that there exist infinitely many composite integers, called Fibonacci pseudoprimes, 
such that (1) holds. It has also been proved in [2] and [4] that every Fibonacci pseudoprime is 
odd. 

(i) Prove that l}m_x + Lm_x - 6 = 0 (mod m). 

In particular, conclude that if m is prime, then Lm_x = 2 or - 3 (mod m). 

(ii) Prove that Fm_2 - L^F^ = 1 (modm). 

References 
1. R. D. Carmichael. "On the Numerical Factors of the Arithmetic Forms an + /?"." Ann. Math. 

Second Series 15 (1913):30-70. 
2. A. Di Porto. "Nonexistence of Even Fibonacci Pseudoprimes of the 1st Kind." The Fibonacci 

Quarterly 31.2 (1993): 173-77. 
3. H. J. A. Duparc. On Almost Primes of the Second Order, pp. 1-13. Amsterdam: Rapport 

ZW, 1955-013, Math. Center, 1955. 
4. D. J. White, J. N. Hunt, & L. A. G. Dresel. "Uniform Huffman Sequences Do Not Exist." 

Bull. LondonMath. Soc. 9 (1977): 193-98. 

Solution by the Proposer 

(i) I fm-2, then 

Ll_l + Lm_l-6 = % + Ll--6 = l2 + l-6 = -4^0(mod2) 
and 

Lm_l = 4 = 1 = -3 (mod 2). 

Now assume that m > 2. Then m is odd. It is well-known that 

L2n = l}n-2{-\y. (2) 
Thus, 

Z^, = 4 - 2(-l)m = l2 - 2(-l) - 3 (mod m). (3) 

Further, it follows by identity (I31) on page 59 of Fibonacci and Lucas Numbers by Verner E. 
Hoggatt, Jr., that 

h^ = LmLm_, - (-I)"-' = (l)Zm_, - 1 S V i - 1 - (4) 

By (2), 
^ , - 2 = 4 - i - 2 ( - i r 1 - C -2(1) - /£_! - 2 (modm). (5) 
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Since L2w = L2m_1 + L2m_29 it follows by (3), (4), and (5) that 

3^Zw_1-l + X^_1-2(modM)? (6) 
which implies that 

4_i + V i - 6 - 0 ( m o d W ) . (7) 
Since 

/£_! + 4,-i - 6 = (4 - i - 2 X 4 - i + 3), (8) 
it follows from (7) and (8) that Lm_1 = 2 or - 3 (modm) if m is prime. 

(ii) If m = 2, then 
i V , _ 2 - V A - i = ^o-A^i = 0-(l)(l) = - l - l ( m o d 2 ) . 

Now assume that m>2. Then /w is odd. We will first prove by induction that 

V ^ H ^ - r W ) (modw) (9) 
for£>0. If A: = 0, then 

V t = 4 - 1 - (-lyOF-i - W ) - 0)0 - 4 • 0) - 1 (modm). 
If A: = 1, then 

4-* = 4-i - ( - 1 M - W ) - (-1X0- 4-i(l)) - 4 - ! (modm). 
Now assume that (9) holds up to k - r. Then 

Aw-(r+l) = Aw-(r-l) — Aw-r 

s ( - f f - ( ' - " ( ^ - 4 - . 4 - i ) - (-1)""r(^V-i - Lm_xFr) 

-(- i r^((Fr . 2 - f4_1)-4- i(4- .+4)) 
-(-ir(r+1)(4-4-i4+i)(mod/W). 

Thus, (9) holds for k > 0. Now let k = /w - 1 . Since /w is odd, it follows by (9) that 

4^(«-l) = A = 1 s (-1)W~1(AW-2 " V l U s A*-2 - Lm-lFm-l (modlll) . 

yifeo solved by P. Bruckman, L. Dresel, andH. Seiffert 

Strictly Monotone 

H-484 Proposed by J. Rodriguez, Sonora, Mexico 
(Vol 32, no. 1, February 1994) 

Find a strictly increasing infinite series of integer numbers such that, for any consecutive three 
of them, the Smarandache Function is neither increasing nor decreasing. 

*Find the largest strictly increasing series of integer numbers for which the Smarandache 
Function is strictly decreasing. 

Solution by Paul $. Bruckman, Edmonds, WA 

Solution to Part 1: For a given natural n, the Smarandache Function of n, denoted by S(ri), 
is defined to be the smallest natural m such that n\m\. 
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The following results ensue from the definition: 

S(n) = max{S(pe)}; (1) 
pe\\n 

S(pe) = ep, ifp>e; (2) 

S(n\) = n. (3) 

Given m natural, we define U(m) to be the set of natural n such that S(n) - m for all 
n s U(m). Then n e U(m) iff n | m! and w| (m -1)! We may easily show from this that 

U(m)= | J { / ^ K / I / T ^ . J I I ! } (4) 
p\m,pe\\(m-l)\ 

In particular, if m is equal to/?, a prime, 

U(p) = {pd:d\(p-1)\}. (5) 

For example, U(2) = {2}, (7(3) = {3,6}, U(5) = {5,10,15,20, 30,40, 60,120}, etc. 

Thus, the smallest element of U(p) is/?, while the largest is/?!. The number of elements of 
U(p) is r((p-1)!), which increases rapidly with increasing/?. 

Using these facts, we may construct an infinite sequence X = {xn}n>l with the properties 
required in part 1 of the problem. Incidentally, the wording of the problem, in both parts, should 
be changed to substitute the word "sequence" for "series." 

We let {/?„}„>! = {2,3,5,7,...} denote the sequence of primes. Our first step is to define an 
infinite sequence E - {en}n^l of positive integers as follows: 

e4u=2u + 2, i/ = l,2,...; e4u+l = 2u + l, e4u+2 = 2u + 3, e4u+3 = 2u + 2, w = 0,l,..; . (6) 

Thus, E = {1, 3,2,4,3,5,4, 6,5, 7, 6,8,7,9,8,10,...}. 
Next, we define the sequence of primes Q as follows: 

Q = {Pen}„>_v (7) 

Thus, Q = {2, 5, 3, 7,5,11, 7,13,11,17,13,19,17,23,19,29,...}. 
Each distinct value of terms in E and Q occurs exactly twice, except the first and third values, 

which occur only once. Observe that no three consecutive terms of E are increasing or decreasing, 
since the values alternate in magnitude; the same is true of Q, since the primes form an increasing 
sequence. 

We now set each term pe of Q equal to S(xn) and seek to find xn such that X = {xn}n>l is 
an increasing sequence of positive integers. For definiteness, we define xn to be the smallest 
positive integer such that xn > xw_1? beginning with x{ = 2. Using the result in (5), we may thus 
uniquely determine xn GS~1(Q) such that xn > x„_1? with xx = 2. We may illustrate by displaying 
the first 20 terms of Xin the table below. Note that xn is a multiple of pe in all cases; indeed xn 

is the smallest multiple of pe satisfying the requirement that X is an increasing sequence. The 
process may be continued ad infinitum, yielding X, a solution to part 1 of the problem. 
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n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

en 

1 
3 
2 
4 
3 
5 
4 
6 
5 
7 

i\=S(x„) 

2 
5 
3 
7 
5 
11 
7 
13 
11 
17 

Xn 

2 
5 
6 
7 
10 
11 
14 
26 
33 
34 

n 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

en 

6 
8 
7 
9 
8 
10 
9 
11 
10 
12 

Pe„ = S(Xn) 

13 
19 
17 
23 
19 
29 
23 
31 
29 
37 

Xn | 

39 
57 
68 
69 
76 
87 
92 
93 
116 ! 
148 

Solution to Part 2: Using the fact that p\{p
n) for all n e {1,2,..., p -1}, where p is prime, we 

see that S((%)) = p for these values. Moreover, 

(?)<(?)<•••<(*(,'-»)'**• 
These facts enable us to construct a strictly increasing sequence of natural numbers, beginning 
with an arbitrary prime, for which the Smarandache Function is strictly decreasing. 

Let {pn}n>i = {2, 3,5,...} denote the sequence of primes. Given n > 1, we may construct a 
sequence of binomial coefficients 

™={(5)te')-.(V)}-
where the w/s are chosen to be the minimum natural numbers subject to \ = ml<m2<-< mr< 
K/Vr+i - 1 ) , such that 

We may choose mi = i for / < s, say, but require mi > i for all i>s. The number of terms in the 
sequence, namely the integer r, depends solely on n. The sequence V(p„) is finite because, for 
some r, 

(Pn-r+2]<(Pn-.r+l) 

y m ) \ mr ) 
for all m. Note that 

<&))-*. {{%'))=»'- <Mh— 
thus, S(V(pn)) is a strictly decreasing sequence, as required. 

We illustrate with two examples. If n = 26, we take pn = 101. We may then take 

^-{C?iM^)(?K^(?K^^)®(^SX»)(S)} 
r i14 

say. We easily check that xx < x2 < x3 < • • • < x14, however, 101 > 97 > • • • > 41, i.e., iSfo) > 
S(x 2 )>->£(x 1 4 ) . 
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For our second example, we take n = 51 (hence, pn = 233). In this case, we take 

^-{(T)(2f)(i7)(TK2")(1?)(,?,)(ir)(T) 181 
10 

179^ (173^ (167^ fl63^ fl57^| (l5i\ (149) (139\ fl37^\ f\3l 
11 ){ 12 ){ 13 ){ 14 ){ 15 ){ 16 ){ 17 X 1 8 A 1 9 A 2 0 / 

127̂ 1 Al3^\ f lO^ f!07^ (103^ AOA f97^ f89 
21 A 23 A 24 A 25 A 26 A27 J'̂ 29A34 

As we may verify, the sequence given above is an increasing sequence. The sequence terminates 
at the 28th term, since (®) < (f4). 

Clearly, we may construct a sequence V(p) in this fashion for all primes p of arbitrary size. 
The number of terms of V(p) clearly grows with p in some fashion; apparently, \V(p)\ = 
0(p/logp) as/? —> oo? but this has not been established. 

Also solved by H. Seiffert and the proposer. 

Ghost from the Past 

H-459 Proposed by Stanley Rabinowitz, Westford, MA 
(Vol 29, no. 4, November 1991) 

Prove that, for all n > 3, 

is very close to the square of an integer. 
Solution byH.-J. Seiffert, Berlin, Germany 

We shall prove that 

(5/U -F„_3f -^Mzll^ + 4 .4(-l)"j = -2.6V5/?2"+1. (1) 

Since (J52n) is a strictly decreasing sequence of positive reals, a simple calculation gives 0< A^ < 
2.6(85-3875) forw>3, where 4, denotes the left side of (1). Noting that 2.6(85-38V5) ~ 
0.076492, we see that the statement of the proposal is reasonable. 

To prove (1), we use the following easily verifiable equations: 

5 # i = hn-2 +2(-l)n; 5F^3 = L,„_4 +3(-l)"; 
^ - 3 ~ Lln-6 + 2 ( - l ) = 3L2„_4 ~ Lin-2 + 2 (~1) ; Lin+\ = ^^In-l ~ ^^2n-4-

Now, a straightforward calculation yields 10^w = 13((11-5V5)Z2W_2 +2(2- V5)Z2w_4) or, by 
2 - v5 = /?3 and 11 - 5V5 = 2/?5 and the Binet form of the Lucas numbers, 

1 0 ^ = 26(/?4 - l)j32n~l = 26(/?2 - a2)p2n+l = -2&S/32n+l. 

This proves (1). 
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