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PROBLEMS PROPOSED IN THIS ISSUE 

H-529 Proposed by Paul S. Bruckman, Highwood, IL 
Let p denote the set of Pythagorean triples (a, b0 c) such that a2 +b2 - c2. Find all pairs of 

integers m, n > 0 such that (a, b, c) = (FmFn, Fm+lFn+2, Fm+2F„+l) ep. 

H-530 Proposed by Andre] Dujella, University-of Zagreb, Croatia 
Let k(n) be the period of a sequence of Fibonacci numbers {F^ modulo n. Prove that 

k(n) < 6n for any positive integer n. Find all positive integers n such that k(n) = 6n. 

H-531 Proposed by Paul S. Bruckman, Highwood, IL 
Consider the sum S = l^it(n)In2, where f(l) = l and t(n) = Hpl„(l-p~2)~\ n> 1, the 

product taken over all prime/? dividing n. Evaluate S and show that it is rational. 

SOLUTIONS 

Comment by H.-J. Seiffert 
Correction: The identity of Problem H-510 should read 

keA„ V J 

The proposer's solution, however, is correct. The mistake arose in the very last step, when 
replacing n by n -1. Indeed, H-510 is the proposer's first (incorrect) version of H-476. 

Continued 

H-509 Proposed by Paul S. Bruckman, Salmiya, Kuwait 
(Vol 34, no. 2, May 1996) 

The continued fractions {base k) are defined as follows: 

[ul,'u2,...,un\k=ul+—- — n = l,2,..., (1) 
2 + 3 + n 

where k is an integer * 0 and (uj^i is an arbitrary sequence of real numbers, 

1997] 283 



ADVANCED PROBLEMS AND SOLUTIONS 

Given a prime p with (-jf) = 1 (Legendre symbol) and k ^ 0 (mod /?), let h be the solution of 
the congruence 

h2 = -k (mod/?), with 0 < h < \ p . (2) 

Suppose a symmetric continued fraction (base k) exists, such that 

^ = [a1,a2,...,aw+1?aw+1?...3a1]^ (3) 

where the a;'s are integers, n is even, and k\ai9 i = 2,4,..., w. Then show that integers x and >> 
exist, with g.c.d.(x, y) = l, given by 

y = K+1,...,aJ^ (4) 
that satisfy 

x2 + ky2 = p. (5) 

Solution by the proposer 
Let [w1? w2,..., wjfc = /?„ I qm n - 1,2,..., define the ?ith convergent of the c.f. (base k\ assum-

ing that the w/s are integers. The pn's and g„'s satisfy the common recurrence 
zn = UnZn-l+kzn-2> « = 3, 4 , . . . . ( 6 ) 

Also, Pilqx = [U\]k = Wj/1 and p2 /g2 =[wl3 w2]yt = U\+klu2 = {uxu2 + k)/u2, which yields the 
initial conditions 

A = ^ f t = 1; P2 = ulu2+k, q2=u2. (7) 

First, we need some results concerning c.f.'s (base k\ which we state as lemmas and prove by 
induction. 

Lemma 1: Let pnlqn and pn+i/qn+i denote successive convergents of a c.f. (base k). Let 

% = (-*)". (8) 
Proof: Let ^ denote the set of positive integers n satisfying (8). Now wl=u1-u2-

(uxu2 + k) -1 = -k = (-k)1; hence, 1 e SV 

Suppose n GSV Then we get w„+l = p„+lq„+2 - pn+2qn+i = Pn+ifavVn+i + *&) ~ (*W2#,+i + 

^ 0 * H - I = ~k(Pn<if»\-Pt*\<ln) = - K = -*(-*)" (by the inductive hypothesis), or wn+l = (-k)n+1. 
Thus, n e Sx => (n +1) G Sx. The result follows by induction. • 

Lemma 2: Let /?„/#„ = [ul9 u2,..., wj^, where the î .'s are integers with k\ni9 i = 2,4, 6,..., for 
« = 1,2,.... Furthermore, suppose the /?w's and #w's are the integers naturally produced in the c.f. 
(base k) expansion, applying the recurrence relation in (6) and the initial conditions in (7). Then, 
for all even n, 

gxAip^q^^kt1, (9) 
g.cd.(pn,qn) = \k$n. (10) 

Proof: Let S2 denote the set of even positive integers n for which (9) and (10) are valid. 
Clearly, g.c.d.(p1?qx) = 1, since qx = 1. Note that 1 . = \k\2/2~l. Also, since k\u2, it follows that 
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k\(uiU2+k). Thus, h(ulu2/k + l)-uxii2/k = l, which implies g.c.d.(p2/k,q2lk) = l; hence, 
g.c.d.(p2,q2) = \k\ = \k\2/2. We thus see that 2 eS2. 

Suppose neS2 and pn_x = (~k)^p'n_x,qn_x = {-k)^q'n_x, p„ = (-k)t»p^ q„ = (-k)±"q>, 
where g.c.d.{p'n_x,q'n_x) = gx.d.(j)'n,q'„) = \. Then we have P„+1 = un+xpn + kpn_x = (-k)2"p^+x, 
where p'n+x = un+1p'„ - p'n_x; similarly, qn+l = {-kfnq'n+x, where q'n+x = un+xq'n - q'n_x. Therefore, 
P&n+\ ~ P„+i1n = (-kfiPteUi ~ Pn+il'n) = (-*)" (using Lemma 1), so p'nq'n+x - p'n+xq'n = 1. Then 
g.c.d.(>;+1, #;+1) = 1, which implies g.c.d.(>„+1, #„+1) = \k$n= \k\^"+2)~l. This is the statement of 
(9)for(#i + 2). 

Again supposing n eS2, let u„+2 = -ku'„+2 (since k\un+2). Then we get pn+2 = un+2p.„+x + kp„ = 
{-k){-kfnu'n+2p'n+x-(-k){-k)^p'n = {-k)l+^p'n+2, where p'n+2 = u'n+2p'„+x-p'n; similarly, qn+2 = 
{-k)l^nq'n+2, where q'n+2 = u'n+2q'n+x-q'n. Then P„+1qn+2-p„+2q„+1 = (-k)in(-ky+i"(p'n+xq'„+2-
P'n+2<l'n+i) = (~kT+l (using Lemma 1), so p'n+xq'n+2 - p'„+2q'n+l = 1. Therefore, g.c.d.(p'n+2, q'n+2) = 1, 
which implies g.c.d.(p„+2,qn+2) = \k\1+i" = \kf<-"+2\ This is the statement of (10) for (n + 2). 
Thus, n e52 => (» + 2) eS2. Since 2eS2, the results follow by induction. D 

Lemma3: If pnlqn= [ux,u2,...,u„\, n = 1,2,..., then 

[«„, V l M2]i = % I <ln-\ a n d K , Vl» • • •» Mllfc = A / Pn-U " = 2> 3> • •' ' (U) 

Proof: Let £3 denote the integers n > 2 for which (11) is valid. Note that [u2\ = w2 /1 = 
q21 qx and [u2, ux\ = i^ + k I ux = (ufa +k)lux- p2l px [using (7)]. Therefore, 2 e S2. 

Suppose nsS3. Then we get [u„+x, u„,..., u^ = un+x + k /[«„,..., u2\ = u„+x + kl(q„l q„_x) = 
(un+xq„+kqn_x)lqn=qn+xlq„ [using (6)]. Also [u„+x, un,..., ux]k = un+x + k / [u„,..., ux\ = un+x + 
kI(P„lP„-i) = (un+xPn+kpn_x)lpn = pn+xlPn. Thus, ne£,=>(» + l)e,S,. Since 2sS3, the 
result follows by induction. • 

Also, we will make use of the following identity: 
(a2 + kb2)(c2 + kd2) = (ac + kbd)2 + k(ad-bc)2. (12) 

Now suppose p{ Iqi = [«i,a2,...,a,]j., i = 1,2,...,» +1, in the sense described in the hypothe-
sis of Lemma 2. Then p„ = {-kf"p'„, qn = {-kfnq'n, pn+x = (-k)i"p'„+x, and qn+x = {-kf"q'n+x, 
where g.c.d.(p'„,q'„) = g.c.d.(^+1,q'n+x) = 1. Moreover, pW„+i-p'„+iti = 1- Also, using Lemma 
3, [an+x, ...,a2\= q„+x I qn and [an+x, ...,ax]k= p„+x Ip„. The «* and (n + l)st convergents of the 
c.f. (base k) given by (3) are p„/q„ and p„+i/q„+1, respectively; the "remainder" of this c.f. is 
equal to pn+x/pn, which assumes the role of un+2. Thus, the value of the c.f. (base k) in (3) is 
given by 

OVt-l / P*)Pn+l + fa = Pn+l +kPl =fffD 

{PnH I Pr,)<Jn+l + k% Pn+fln+l + *PAn 

where N = (p'„+l)2 + k(p'„)2 and D = p'„+xq'„+x + kp'nq'n [dividing throughout by the common factor 
(-*)"]. Therefore, plh = NID. Now set a = p'n+x, b = p'n,c = q'n+x, and d = q'n in (12) and let 
Q = (<^+1)2 + k{q'n)2. That identity then becomes 

D2+k = NQ. (13) 
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Let g = g.c.d.(N,D). We see from (13) that g\k. Since N = pg and g.c.d.(p, k) = l(by 
hypothesis), it follows that g = l, so N = p and D = h. However, we know that [an+l, ...,a^\k = 
Pn+i / A = Pn+i I Pn - Setting x = p'n+l and y = p'n completes the proof of (4) and (5). 

Summary: Given the minimal positive solution of the congruence in (2), we have indicated an 
algorithm for generating solutions of (5). This construction involves a special type of c.f. (base 
k), as defined by (1). The conditions in (3) might, at first glance, seem unduly restrictive. It may 
be shown, however, that pih may always be put into the desired c.f. form in (3), provided that 
integers x and>> exist that satisfy (5). The proof of this assertion is left to the interested reader. 

Setting k - 1 in the problem yields Serret's construction (1848), one of several known in the 
literature for finding the unique x and y such that p - x2 +y2, provided p is a prime with p = 1 
(mod 4). Also, for k = l, the identity in (12) reduces to an identity attributable to Leonardo of 
Pisa (a.k.a. Fibonacci), such identity appearing in his Liber Abaci (1202). 

Two examples illustrate the construction's applicability. 
Example 1: Let k = 3 and p = 757. Note that 

( ~3] = (~3 + 4'757) = (3025) = (552) = ] 
V75?J t 757 J 1757 J [757J ' 

Hence, the minimal positive solution of the congruence h2 = -3 (mod 757) is h = 55. Without 
disclosing the logic of the following expansion, we may at least verify its accuracy: 

757/55 = 13 + 42/55 = 13 + 3 / ^ ; 
01 = 55/14 = 3 + 13/14 = 3+ 3/02; 
6>2 = 42/13 = 0 + 3/#3; 
<93 = 13/14 = 0 + 3/6>4; 
#4 = 42/13 = 3 + 3/13 = 3 + 3/05; 
05 = 13. 

Thus, 757 / 55 = [13,3,0,0,3,13]3, which is of the desired form, with n - 2. Then the solutions of 
x2 + 3y2 -151 are found by x/y = [0,3,13]3. We find the successive convergents of this c.f: 
0/1, 3/3, and 39/42. Hence, x/y = 39/42 = 13/14, so x = 13 and j / = 14. As we may verify, 
132+3-142 = 757. 

Example 2: Let k--2 and p - 193. Since 

2 ^ f2 + 193-14^ ^2704^1 fS22 

193J V 193 J V 193 J 193 = 1 

we see that h = 52 is the minimal positive solution of the congruence h2 = 2 (mod 193). We may 
expand 193/52 as follows: 

193/52 = 5-67/52 = 5 - 2 / ^ ; 
0X = 104/67 = 2-30/67 = 2-2/6>2; 
<92 = 67/15 = 5-8/15 = 5-2/#3 ; 
#3 = i5/4 = 5-5 /4 = 5-2/<94; 
04 = 8/5 = 2 - 2 / 5 = 2 -2 /# 5 ; 
6>5 = 5. 
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Thus, 193 / 52 = [5,2,5,5,2,5]_2, which is of the desired form, with n = 2. Therefore, solutions of 
x2-2y2 = l93 are found from x/ j / = [5,2,5]_2. This yields the convergents: 5/1, 8/2, and 
30/8 ,sox = 15and>> = 4. Q.E.D. 

Searching for Pairs 

H-511 Proposed by M. N. Deshpande, Aurangabad, India 
(Vol 34, no. 2, May 1996) 

Find all possible pairs of positive integers m and n such that m(m + l) = n(m + ri). [Two such 
pairs are: m = 1, n - 1; m - 9, n - 6.] 

Solution byH.-J. Seiffert, Berlin, Germany 
The pairs (m, ri) e N2 asked for are (m, ri) - (F2k, F2k_lF2k), where k is a positive integer. It 

is easily verified that, for these pairs, the considered equation is indeed satisfied. 
Below we will use the well-known result that all solutions (a, b) e N2 of the Pell equation 

a2 -5b2 - -4 are given by (a, b) = (Z^-i? F2Jc_i), k eN. In particular, we have a > b. 
Let (m, ri) e N2 such that m(m +1) = n(m + ri). Write m = rp and n = rq, where p,q,r GN 

such that gcd(p,q) = l. Then the given equation becomes p(rp + l) = rq(p + q), which shows 
that r divides p. Letting p = rs, s e # , we get s(r2.s +1) = q(rs + g). From p = rs, gcd(p, #) = 1, 
and s\q2, it follows that s = l. Now, the resulting equation r2 + l = q(r + q) may be written as 
(2r - g)2 - 5^2 = -4 . Hence, (2r ~q,q) = (Lzk-h F2fc-i) f°r s o m e * G ̂ - ^ readily follows that 
r = F2it, so that we have (m, TI) = (F2

2 ,̂ F2k_lF2k). 

yifea solved by P. Bruckman, L. A (7. Dresel, A. Dujella, C Georghiou, and the proposer. 

FPP?s 

H-512 Proposed by Paul S. Bruckman, Highwood, IL 
(Vol 34, no. 2, May 1996) 

The Fibonaccipseudoprimes (or FPP's) are those composite w with g.c.d.(w, 10) = 1 such that 
^|.Fw_f , where sn is the Jacobi symbol (|). Suppose n = p(p + 2), where/? and /? + 2 are "twin 
primes." Prove that n is a FPP if and only if p = 7 (mod 10). 
Solution by Lawrence Somer, Catholic University of America, Washington DC 

We first suppose that p = 7 (mod 10). Then p + 2 = 9 (mod 10). By quadratic reciprocity, 
we see that ( |) = -1 and ( ^ ) = 1. Hence, (j^) = ( ^ ( ^ ) = (-1)(1) = - 1 . We want to show 
that p(p + 2)\Fp(p+2)+l. It is well known that Fn\Fkn for any positive integer k. Since both/? and 
p + 2 are primes, p\Fp_£p = Fp+l and p + 2 l i y ^ - ^ = ̂ >+i• Further, since p (p + 2) + l = (p +1)2, 
^/H-I \F

ip+i? > a n d S c d - (A /> + 2) = 1, we see that /?(p + 2) |Fp(p+2)+1. 
Now suppose that n = p{p + 2) is a FPP. We must have p = 1,3,5, 7, or 9 (mod 10). If 

p = S (mod 10), then g.c.d.(w, 10)* 1. If p = 3 (mod 10), then p + 2 = 5 (mod 10) and, again, 
g.c.d.(/2,10) * 1. Suppose p = 1 (mod 10). Then /? + 2 = 3 (mod 10). By quadratic reciprocity, 
(i) = l a n d ( ^ ) = - l . Hence, *„ = ( ^ j = {j){-^) = (!)(-!) = - 1 , so n-en = p(p + 2)+1 = 
p2 + 2p +1. Thus, /?(/> + 2) \Fpi+2p+l. It is well known that (Fa9 Fb) = F(a^ b), where (a, A) denotes 
the g.c.d. of a and b. We note that p\Fp_£p = Fp_x. Now, p2 + 2p - 3 = (p - l)(p + 3). Hence, 
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Pl^>+2p-3- Therefore, p\(Fpi 
+ip+h Fp2+2p-3)> which implies that p\F^p2+2p+^p2+2p_2y However, 

(p2+2p + \p2 + 2p-3)\(p2+2p + l)-(p2+2p-3) = 4, so p\F4 = 3. Thus, p = 3, which is a 
contradiction since p = 1 (mod 10). Thus, p 4 1 (mod 10). Now suppose that p = 9 (mod 10). 
Then /? + 2 s l (mod 10). By quadratic reciprocity, (j) = (-f^) = 1. Therefore, sn = (p(p+2)) = 
ij)(jh) = (W) = h SO ̂ - ^ = i707 + 2 ) - l = Jp2 + 2/7-l. Now, p\Fp.£p= Fp^. Thus, as in 
our above argument, p\Fp2+2p_3. Hence, p | ( iy+2^i ,^2+ 2 /^3) = JF(p2+2p.1)/,2+2/^3). However, 
(p2+2p-1,p2+2p-3)\{p2 + 2/7-1)-0?2 + 2p-3) = 2. Thus, ^ |F2 = 1, which is a contradic-
tion. Therefore, p # 9 (mod 10); hence, /? = 7 (mod 10). 
y4&o solved by L. A. G Dresel, A. Dujella, H.-J.. Seiffert,_D. Terr, and the proposer. 

Sum Product 

H-513 Proposed by Paul S. Bruckman, Highwood, IL * .„ 
(Vol 349 no. 4, August 1996) 

Define the following quantities: 

So (^')2' So *K" + 1)I' So (^04? So n\((n + l)\)2(n + 2 ) \ ' 

Prove that A2D = B2C. 
Solution by the proposer 

Clearly, the series defining^ andB are convergent. Using Stirling's formula, (2„") ~ 4"(«;r)~1/2 

as n -> oo. Thus, the convergence of the series defining C is comparable to that of the series 
y 4" , 
s»1/2(»!)2' 

since the latter series is clearly convergent, so is the series defining C. Also, D is defined by a 
series that is comparable to the series 

y 4 (2n)\ 
&y (»o4' 

and so the series defining D is convergent. Clearly, all quantities are positive quantities. 
We recognize the Modified Bessel Functions of integer order, defined as follows: 

400 = (i*)n X u L n r an entire fonction of z> ^ = 0 ,1 ,2 , . . . . (1) 
k>o Kiyp-rKji 

See, e.g., Handbook of Mathematical Functions, ed. M. Abramowitz & I. A. Stegun (9th prtg., 
§9. Washington, D.C.: National Bureau of Standards, 1970). We then see that A = IQ= I0(2) 
and B = IX = Ix(2). It is also indicated in this source that the following relation holds: 

It follows from (2) that C = (J0)2 and D = (IJ2. Then A2D = B2C = (Vi)2 . 

Also Solved by C Georghiou. 
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