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Given integers k, w, and n. How many n-letter cyclic strings with marked first letter are 
there, over an alphabet of k letters, which contain no constant substring of length > wl Let 
/£,(«) denote the number of such strings. We remark that by itself the phrase "cyclic string with 
marked first letter" is the same as "linear string." The difference between our problem and a simi-
lar one for linear strings lies in the phrase "no constant substring." In our problem this constant 
substring can lie on the circular, rather than only on the linear string. 

This problem was solved for k = 2 in [3]. Here we present the solution for arbitrary k, in the 
form of a surprisingly explicit formula. 

Theorem 1: There is an integer n$ = nQ(k, w) and an algebraic number /? = /?(&, w) such that for 
all n > n0 the number of such strings is given by the (exact, not asymptotic) formula 

[-(k -1), otherwise. 

where "<•)" is the "nearest integer" function, J3 is the positive real root of the equation xw = 
(k -1)(1 + x + x2 + • • • + xw~l), and n^ can be taken as 

. . v " i n n / IAI 

TIQ = 7%(w, k) = max w +1, 
kwlog2w 

This will follow from an analysis of the generating function, which is contained in the follow-
ing theorem. 

Theorem 2: Let F*(x) = 2^=0 LK
w(ri)xn be the generating function for {Lk

w(n)}. Then 

1 - J C " ( ( ^ , I 1 n.,7^ î» I 1 V \ 
F*(x) = ^-\kx + {k-\)y\ 

l-x 
w + l- wkx w + \ 

W+l 1 „W+1 l-kx + (k-l)xw+l l - x 

We use the following notation. Our alphabet $& = sik will be the set of residues {0,1,..., 
k -1} modulo k. If y = yx... yn is a string, then its sum is Z7 yj modulo k. The set of w-letter 
cyclic strings with marked first letter, over this A:-letter alphabet, will be denoted by CS(n, k\ and 
those which also have no constant substrings of length >w will be denoted by C$(n, k,w). The 
subset of CS(«, k) that consists of just those strings whose sum is 0 modulo k will be denoted by 
CS0(«, k), and the subset of those which also have no zero substring of length >w will be 
CS0(w, k, w). Finally, LS0(w, k, w) will be the set of linear w-strings over si that contain no zero 
substring of length >w. 

* Supported by the Office of Naval Research. 
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1. PROOF OF THEOREM 2 

We will reduce our problem to counting LS0(w, k, w), which is much easier, as we will see 
later. 

Step 1. First, we will show that our problem can be reduced to a simpler problem of count-
ing certain strings in CS(/i, k) without zero substrings of length > (w -1). 

We consider a map T:CS(n, k) -> CS(w, k) defined as follows: 

Tx = {xi+l-xi (mod*)}^ (where x„+1:= xt). 

This is a generalization of the map defined in [1] for k - 2. 
Clearly, T(CS(n, k)) c CS0(n, k). Note also that all maximal y-letter constant substrings of 

nonconstant strings are mapped onto zero substrings of length j ' - l , and constant strings in 
CS(nv k) are mapped onto 0 eCS(«, k)\fn-w. 

Given a string y = yl,..yn GCS0(n,k) and any letter a es&, we can uniquely determine a 
string x = xx...xn such that T(x) = y and xl=a since 

(V/ e{1,...,«}): xM = xt +yt (mod k) (again, xn+l := xx). 

Therefore, Tis a k:l map onto lmT= CS0(n, k). Furthermore, T(CS0(n,k,w)) = CSQ(n,k,w-l), 
together with 0 eCS(n, k)i£n = w. 

Let Lk
w(n) = \CS0(n, k, w) \ Then we have that 

[*(Zt_i(«) + l), for n = w, 

where 1 accounts for the string 0 e CS(n, k) in the case n = w. 
Step 2. Consider a CS0(«, A, w -1) string that ends on a nonzero letter. [We will denote the 

number of such strings by A^^w) and, of those, the strings whose first letter is nonzero will be 
denoted by A^,.^).] This string has < w -1 zeros at the beginning, so if we remove the zeros we 
will get a unique CS0(n-i,k,w-l) string, where 0<i<w-l, whose first and last letters are 
nonzero. Clearly, we can also perform the inverse operation, i.e., obtain a unique CS0(^, k,w-l) 
string whose last letter is nonzero, given i e {1,..., n) and a CS0(w - /', k,w-l) string whose first 
and last letters are nonzero, by adding i zeros at the beginning. Hence, we see that 

w-l 

At-i(») = lAt-i(»-0-
7=0 

Step 3. Let us now look at the linear strings of the type LS0(w, k,w-l). We define a map 
from LS0(n-l,k,w-l) to the set of those strings in U7=oCS0(n-i,k,w-T) strings (where 
0 < i < w ) whose last letter is nonzero, plus the empty string if n < w. 

Let such a string y = yx... yn_x eLS0(^ - 1 , k, w -1) be given, and put s = s(y) = - E / yj (mod 
k). Then our map will take y to the string 

yiyi-yn-i-n if^ = 0,j;w_w^0, andjV/ = "- = J„-i = °>°<*<w-l ; 
[0, if y is a zero string of length n-l<w-l. 
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Clearly, this map is a bijection onto its image. Let tk
w(n) - |LS0(w, k, w) |. Then we can con-

clude from the above that 

v ^ ^ IX if l<w<w, 
Jto [0, if 71 > W +1. 

Step 4. Now consider some string y GCS0(n,k,w-l). Either y is a zero string of length 
< w -1 or it has < w -1 zeros as the (possibly empty) union of its initial and terminal blocks of 
zeros. If we remove these zeros, we will get either an empty string (if n < w -1) or a CS0(n - i, k, 
w-l) string (where 0 < i < w -1) whose first and last letters are nonzero. 

Conversely, given a string y e CS0(w - / , k,w-l) (where 0 < i < w -1) with nonzero first and 
last letters, add / zeros between the last and first letter and, in the resulting string, mark one of the 
added zeros or the first nonzero letter of y as the first letter of the resulting CS0(w, k, w -1) 
string. There are / +1 choices for the new first letter. Let us show that this map is 1: (/ +1) from 
CS0(n - i, k, w -1) \ {0} onto its image. 

Suppose not. This means that, for some / e{0,1,..., w-1}, we can obtain two identical non-
zero CS0(n, k, w -1) strings by adding / zeros 

(a) to two different nonzero CSQ(n -/', k, w -1) strings with first and last nonzero letters, or 
(b) to the same string in the above set and then marking different letters as the new first 

letter. 
But (a) is clearly impossible, since it implies that by removing the / zeros (i.e., all the zeros) 

between the last and first nonzero letters, we can get two different CS0(w-/ , k,w-l) strings that 
begin and end on a nonzero letter. 

Hence, (b) must be true, i.e., there must exist a nonzero x e CS0(w, k, w -1) such that 
1) (3s*0)(Vr)(x r = x r + , ) ,and 
2) *i = - = x, = 0. 

But it is easy to see that 1) and 2) imply that x = 0. This is a contradiction, so our map must 
be 1: (i +1) from CS0(n-/', k9w-l)\{0} onto its image. 

Therefore, it follows that i£- i (°) = ° t s i n c e z t - i ( ° ) = °l a n d 

., ^ „, fl, if 1 <n<w, 
Ll_l(n) = J](i + l)Ai_l(n-i) + \' 

^ [0, if n>w. 
We can summarize the developments so far by giving the following set of equations that have 

been proved: 

rk K(n) = 
IkL^^n), forn^w, 

*(/*_!(/!)+ 1), for n = w. 

w-l w-l 

I.-
7=0 

lSJoAVi(«-0, forn^ + 1. 
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fee + O A t i ^ - O , forn>w. 

In [3] is it shown that 

e MA1"' forO<»<w-l, 
[ S r = i d ( » - 0 , forn>w. 

Generalizing the proof of this fact for a ̂ -letter alphabet, it is easy to show that 

2 (*", fo rO<«<w-l , 

It is also a special case of Example 6.4 on pages 1102-1103 of [4] (for it-letter, instead of binary, 
strings). [Of course, it is assumed that if « < 0 o r w < 0 in any of the above formulas, then 
Lk

w(n) = Lk
w{n) = A * » = A » = £k

w(n) = 0.] 
Define the generating functions 

Fk(x) = £ /*(„)*», ©£(*) = £ A*»x", 

<f>t(x) = £ Kk
w(n)x", ftix) = £ £(„)*". 

w=0 «=0 

Then we have 
F:(x)=kF:_1(X)+kx\ 

1 — V W 

Ot_i(*) = (l + x + - +xw-1)ftt-1(x) = i-^-Ot.Cx), 

X/W*_i(x) = X + X2 + • • • + XW + (1 + X + • • • + XW) ̂ ( X ) 
x(l-xw) l-xw + 1 _* , , 

F£1(x) = x + x2 + - + x ^ 1 + (l + ̂ ^ 
x-xw l-(w + l)xw+wxw+l,k , \ 

=—+—-—-—i—^i-\(xx 
l-x ( l -x) 2 w 1V h 

and, finally, from (1) above, 
k 1 + X + ---+X""1

 = l-XW 

Jw-l{X)~l-(k-l)x (k-l)xw l-kx + (k-l)xw+l' 

Hence, 

( l-xw 

l-kx + (k-l)x w+l 
J 

x(l-xw) l-xw+1 l-xw XL , , 
l-x l-x l-x 
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or, equivalently, 

«* , . (k-l)x2(l-xw) l-x 
l-kx + (k-l)xw+1 l-xw+1' 

SO 

pk , = x-xw l-(w + l)xw + wxw+1 jk-l)x2(l-xw) \-x 
w-lW l_x + (lx)2 l-kx + (k-l)X

W+l 1-XW+1 

= X-XW ^ l~XW
 ( k l)x2 1-(W + 1)XW+WXW+1 

l-x + l-x C )X (l-kx + (k-l)xw+1)(l-xw+1)' 

and thus, 

F:(x) = k\xw + X X 
A 

1-X j 

W . - , . ,VW+1 
7 l - * W / i IN 2 l~(w + l)xW+WX 

+ k (k - X)xl - - -^ n— l-x^ ! )" (l-kx + (k-l)xw+l)(l-xw+1) 

l-xw 

kx + (k-l)x\ 
f w + l- wkx w + l 

W+l 1 V W+1 l-kx + (k-l)xw+L l-x 

as asserted in the statement of the theorem. 

Let us now find the coefficients of F*{n). We have that, for n >1, 
w 

Lk
w{n) = {k-l)YdK{n-i), 

where 

where "[JC"](-)" means "the coefficient of x" in (•)". Let 

Bk
w{n) = [xH 1 

J-kx + (k-l)xw+1 '' 

then 

At(n) = (w + l)Bk
w(n)-wkBk

w(n-l)-S„, 

where 

(w + l, if(w + l)/n, 
[0, otherwise. 

Let us find an exact formula for B*(n) that involves binomial coefficients. Then in the next 
section we will find the formula that is claimed in Theorem 1 above. We have that 

1 1 1 
l-kx + (k-l)xw+l l-kx ^ (k-l)xw+l 

l-kx 
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SO 

and hence, 

since 

m m(w+l) 

^K (l-kx)m+1 t , (l--fcc)m+1 
m=0 

00 f 00 / . \ \ 

m=0 V=° 

IlrA-*)"^^ w=o /=o 

£ » = * Z I w J T^T = * E ' 
0<w<»/(w+l)V J\& J m 

w+l ' 

4(«) = *"Z (w+i)i m _w M ; w+l 

-1» V " (n-wm^fl-k , „ 
- k L TTT^I m T^rl -*»» m"lw n ~ w m 

m = l^n-Mm = 0^(w + lj["-™yw\"-1-wm\ = 0. 

2. PROOF OF THEOREM 1 

If we expand in partial fractions, 

(l-x"W-l)x(w + l-whc)_T Ca a 
• ^ ~ai-x/a+n+-(l-x)(l-Ax + ( * - l ) : 0 £ 1-x' 

where a runs over the zeros of the second factor in the denominator, then it is a simple exercise 
to verify that all Ca = 1 (a & 1), Q = w(k -1), and D = -kw. Hence, if we read off the coefficient 
of x" in the last form of the generating function given in Theorem 2, we find that 

-kw, if 71 = 0, 
k, if 1 < n < w, 
-(k - l)(w +1), if >v +1 does not divide n, 
0, otherwise. 

(2) 

Proposition 1: The roots of the equation l-kx + (k- l)xw+1 = 0 consist of a root x = 1, one posi-
tive real root <1, and w-l other roots all of which have absolute values >1. 

Proof: Indeed, the roots other than x = l are the reciprocals of the roots of 

Yw,k(x) = xw-(k-i)(x»-1 + - + i) = 0. 

Let p be the positive real zero of y/wj.. Then its remaining zeros are those of 

(3) 
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x-p = / " ' + (fi-(k- \))xw~2 + {fi2-{k- l)fi - (k - \))xw-1 + 
w-1 (4) 

We claim that the coefficients of this last polynomial increase steadily, i.e., that {^^(/OHy. 
Indeed, note first that, since yWf*(0) < 0 and y/Wfk(k) > 0, we have /? < k. But then the claim is 
true, because ysj+iik(fl) - Wj,k(P)= PJifi~ k) < 0. A theorem of Enestrom-Kakeya [2] holds that 
if the coefficients of a polynomial are positive real numbers and are increasing then all of the zeros 
of the polynomial lie inside the unit disk. This completes the proof of the proposition. • 

We now investigate the quantity n$ in the statement of Theorem 1, which requires sharper 
bounds on the roots of equation (3) above. First, we require a bound on /? itself. 

Proposition 2: We have k-k/kw <J3<k-(k-l)/kw. 

Proof: We note that y/wk{x) is negative in 0 < x < /? and positive in ()<x<k. Hence, it 
suffices to show that y/Wtk(k -(k-l)/kw)>0 and y/w,k(k ~klkw)<0. But 

r-(*-^>*~{('-£ 
f 

= (*-!) 1 - 1 

and, similarly, 

k i » w + i l i •• * ^ . * * - ^ = * w + 1 i -kw) K" kw+l 

w+l 

•w+l > + (k-V) 

( 
= k 1 - 1 - \<k 1- 1 w 

• 1 = - w -1<0, 

and the equality holds iff w = 1. D 
Next, we require a better bound for the roots of y/wjc other than the root j3. We know that 

these other roots have moduli <1, but the following proposition gives a sharper result. 

Propositions: The zeros of y/wJc(x), otherthan/?, all lie in the disk \x\<l-(k-l)/ kw. 

Proof: Observe that the zeros, other than 1 and j3, are the set of all zeros of the polynomial 
displayed in the last member of (4) above. If we denote that polynomial by g(x), then we claim 
that not only do the coefficients of g increase steadily, as shown above, but that if we choose 
R = P - k +1, then 0 < R < 1 and the coefficients of g(Rx) still increase steadily. If we can show 
this, then we will know that all zeros of g lie in the disk \x\<R<l. 

But isi? is chosen so that the coefficient sequence of g(Rx), viz. the sequence 

K-y-uW};: w-l 
0 ' 
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increases withy', then the result will follow. Nowi? is surely large enough to achieve this if 

m m — r-7->l, 

i.e., if 

R>R= max 
i<y<w-i y/j_u(j3) 

But, since yuk{fi) = PWj-uil3) - (*-1), we have 

m*xi<j<w-i Wj-i,k(P) Vo,k(P) 

Thus, all zeros of g lie in the disk | x | < /? - k +1, and the result follows by Proposition 2 above. D 

Now consider the exact formula (2) for the number Lk
w(n) of strings. The first term will be 

the nearest integer to fin as soon as the contribution of all of the other roots a * lip is <l/2. In 
view of Proposition 3, this contribution will be less than 1/2 if n>kw\og(2w)l {k-Y), and the 
proof of Theorem 1 is complete. D 

Notice, however, that, in order to obtain the estimate for ;%, we bounded the absolute value 
of the sum of powers of the small roots by the sum of their absolute values. Since this does not 
take into account many cancellations in Y,a*\,p &'", our estimate (which grows like kw~l) is much 
greater than the actual ^ ' s . In fact, based on empirical data for small k and w, we conjecture that 
^(k, w) grows polynomially in both k and w (specifically, slower than k2w3, but faster than kw2). 
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