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1. INTRODUCTION 

Let {G(J, £)}fc=1 denote the Fibonacci y-sequences such that G(2, k) = Fk, the k^ Fibonacci 
number and, for j > 2, 

Definition 1: {G(JMti = {GlA*U = U , ....G(/, *) = G ( y - U U = 1,2,...,./. G(j,k) = 
G(j,k-l) + GU,k-2) + .-.+G(j,k-Ak>j}-

Thus, new elements of the set {G(y, £)}*=1 for j = 2, 3, ... are created by adding the previous 
j elements of the sequence, using as initial values the first j values of {G(j - 1 , k)}™=l. Fibonacci 
y-sequences, satisfying the y*-order linear recurrence relation in Definition 1, are also called y-
bonacci, y-acci, ory-generalized Fibonacci numbers. They are a special case of a general linear 
recurrence relation studied by Levesque [10] and Tee [17]. The case j = 3 yields so-called Tri-
bonacci numbers (see Feinberg [6]). Table 1 gives the values {G(J, k)}1^ for j = 2,..., 7. 

TABLE 1. {G(j, *)}Jti forj = 2, . . . , 7 
\Vk 
1/0 

2 

3 

4 

5 

6 

7 

2 

1 

1 

1 

1 

1 

1 

3 

2 

2 

2 

2 

2 

2 

4 

3 

4 

4 

4 

4 

4 

5 

5 

7 

8 

8 

8 

8 

6 

8 

13 

15 

16 

16 

16 

7 

13 

24 

29 

31 

32 

32 

8 

21 

44 

56 

61 

63 

64 

9 

34 

81 

108 

120 

125 

127 

10 

55 

149 

208 

236 

248 

253 

11 

89 

274 

401 

464 

492 

504 

12 

144 

504 

773 

912 

976 

1004 

13 

233 

927 

1490 

1793 

1936 

2000 

14 

377 

1705 

2872 

3525 

3840 

3984 

15 

610 

3136 

5536 

6930 

7617 

7936 

16 

987 

5768 

10671 

13624 

15019 

15808 

There is associated with each sequence {G(J, k)}™=l the 7th-degree polynomial 

Fj{x) = xj-xj-l-xj-2 x - 1 , (1) 

denoted in the present paper as Fibonacci y'-polynomials. Let the real or complex number Sj 
denote the sum of the 7th powers of the roots of a polynomial of degree j . Then Newton's for-
mula is given by (see Tee [ 18]) 

Sj = afij^ +a2Sj_2 + -+aJ_lSl +jap Sx = 1, (2) 

where the ax are coefficients of the monic polynomial xJ - a^c}~1 - a2xJ~2 Qj_xx - a}t = 0. 
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As an observation, referring to (1), G(j, j + 2) = 2J -1 = Sj9 j>2 if a;. = 1, Vi, which can be 
shown inductively. Godsil and Razen [8] derived the generating function for a self-generating 
sequence having parameters k, m, and r, denoted SGS(&, m, r), given by 

Pk+r(x) F(x) = 
(l-xf -mx' ,k+r ' 

and showed no Fibonacciy'-sequence was a SGS for j > 4, where pk+r is a polynomial of degree 
at most k+r. The well-known generating function for Fibonacci y'-sequences (see Philippou 
[15]), 

Qj(x) = - j - ^ — j - r - j = iG(J,k)J, W<05, (4) 
J I -v* v* . . . -yJ yJ +mmi 

1 A- A- A A k=l 

which also appeared in the work of Godsil and Razen [8], is a special case of the generating 
formula of Levesque [10]. If x is replaced by if1 and a factor of 77-1 is introduced, then (4) 
becomes 

£1 T l + 0]-2)if 

The region of convergence of (5) is (see Tee [17]) {r/:\r/\> Xj}? where Xj is the largest real root 
of (1). The form of (5) is useful in the context of the present paper. A derivation of (5) is 
presented in the next section by an alternate method that also reveals several number theoretic 
properties of the sequences {G(j\k)}™=l. Properties of the zeros of the Fibonacci 7-polynomials 
Fj(x) are restated, and several are proved by a different method. 

Another result of the paper is a geometrical interpretation of {G(j, k)}™=l in terms of a 
sequence of sets such that the first set depends on the Fibonacci numbers and subsequent sets on 
the Fibonacci j-sequences. For j -2, a fractal is given and it is shown that a sequence of com-
pact sets exists such that the fractal dimension, counting, and tiling features depend on the Fibo-
nacci j-sequences. An exact expression for the fractal dimension is derived which depends on the 
largest real zeros of the Fibonacci7-polynomials, xJy V/ > 2. Fractals are of interest in the mathe-
matical sciences (see Mandelbrot [12]). 

2, CONVERGENCE PROPERTIES 

Miller [13] showed that the zeros of the polynomials Fj(x) are distinct, all but one lies in the 
unit disk and the latter is real and lies in the interval (1,2). Flores [7] showed that Xj -> 2 as 
j -^ +00. The monotonic properties of the sequence {xj}^ are indicated in 

Lemma 1: 
l<Xj<xJ+l<2, 7 = 2,3,..., (6) 

Xj -» 2 monotonically as j -> +00. (7) 

Proof: Referring to (1), for each7, Fj(l) = -(7 -1), Fj(2) = 1. Thus, there is a real zero, 
denoted Xj. Since Fj(x) -F.^x) = xJ~l(x - 2), it follows by continuity that 

F/(x)<Fy_1(x), 0 < x < 2 , 
Fj(x)>F-^x), 2<x< +oo, 
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which implies (6). Note that Xj is largest in magnitude among zeros, since Fj(x) > F2(x) > 1 if 
x > 2, j > 2. To show (7), write 

FAx) = F2(x) + x\x- 2)l~xJ . J l — x 
Suppose that sup{x; :Fj{xj) = Q} = s <2. If Sj ->0+ as j-> +oo then, for some positive 

sequence {Sj}^, it follows by continuity of Fj that the Sj may be chosen small enough that 
| Fj (s - 8j) | < 1 / j . Thus, noting that s > 1, it follows that 

lim FJ(e-SJ)= lim \F2(e-8J) + (e-8j)2(e-SJ-2)1~ie~W =-*>. 
; -»+oo ^ ^ y'-^+oo I J J J \— 8 + d • \ 

V •* J 

The previous statement is a contradiction which proves the lemma. 
A result of Flores [7] is the following theorem. 

Theorem 1: For sufficiently large k, 3 a constant c> 0 such that 

G(j, *) * ex) and lim G ^ ^ ^ = xJt j = 2,3,.... (8) 

The following numerical examples were calculated on a 77-85©: 

x3 = 1.839286755, x4 = 1927561975, x10 = 1.999018633, x20 = 1999999046. 

The exponential growth of the Fibonacciy-sequences is evident in 

Corollary 1: Let M > 0, n e Z+. Then V7 > 2, 1 < J < 7 - 1 , 3* such that 

\Gak0)-MG(j-i,k0)\>n, k0>Jc. (9) 

Proof: By Theorem 1 and the definition of limit, there is a constant C > 0 that depends on 
ij so that, for large enough k, G(J, k) I G(j - /, k) > C(xy / *•_,.)* -> +00 as A: -» +00. 

In [17] Tee showed convergence of the infinite series in the following theorem as a special 
case of a more general result if \rj\> xj9 j = 2,3,..., for which a proof is also given in the present 
paper. 

Theorem 2: 

such that (10) diverges at 77 = ±Xj and 

r ^ . , f(^-l)/((i7-2)i/), if i />2, 17^-2, 
hm Gy(i7) = < (11) 

;->-K» ^ [+00, if 77 = 2 . 

Proof: The theorem is proved first for 77 = 2, j > 2. A sketch of the proof, which is essen-
tially the same as that for 77 = 2, is indicated for values of 77 other than 2. Parallel results are 
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given for t] < -xj9 for which the same method is applicable. A sequence of lemmas establishes the 
theorem for values of j > 2. Define the infinite sequence 

HQ,j,k) = G(j,k + 3)- SGO' ,0 + l U ^ l - (12) 
V/=i J 

The significance of the 1 in the argument of H will become apparent. Then 

Lemma 2: 

i£^-ZW (13) 
5 ̂  G(j, *)(-!)* I f , H(X j , k)(-lf+1 

eh ik ~~i k 2^ • (14) 

Proof: Equation (14) corresponds to r/ = -2. To prove (13), expand 

tx 2k 2 4 + 2* 
1 1 1 G(j,3)-l G( / ,4 ) - l G(/,A:)-1 
2 4 2fc 8 16 2fc 

L J l . ± . . . . V ^ n , GC/,3)-l-GOM) , G(J,4)-l-G(J,l) | 
t?x1k V8 16 J 8 16 

G a * ) - i - G q i ) 

= 1 + l Q < A 0 + f J L + J - + . . . > | G C / > 2 ) + g a 4 ) - l - G C / , l ) - G C / > 2 ) + , 
2 2 V16 32 J ^ ' 16 
GO,AQ-I-GO,I)-GO,2) 

2* 
= 1 G{j,\) 1 GQ,2) 1 GQ,3) ff(U,l) #(l, ./ ,2) 

2 2 2 4 2 8 16 32 
GO', *) - 1 - GO', 1) - G(j, 2) - GQ, 3) | vk> 5 

2fc 

lGC/,1) lGC/,2) IGQ',3) l G Q ^ + 1) 
2 2 2 4 2 8 2 2*+1 

| f f ( l , 7 , l ) | ^(1,7,2) | ^ ( U , * ) 
16 32 2k+3 

GQ,k')-l-GU,l)-GU,2) GQ,k + l) 
+ _ + ..., 

for every k' > k + 3. Denote the last term in the above expression by I(k, j , k')l 2k', Vk' > k + 3, 
k>\. 
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By the definition of G(J, k) and H(l, j , k) 

G(J, k') 12k' > I(k, j , k') 12k' > H{\, j , k) 12k' > 0, j > 2. (15) 

Thus, by Theorem 1 and (15), the last term approaches 0 as k and &'->+oo and (13) follows. 
The proof of (14) is similar, and one obtains 

f GO, *)(-!)* = - l 1 (rl)kGU,k) 
k=i 

= - l lGC/,1) 1 0 0 , 2 ) 1GQ,3) (-l)*+1GQ,£ + l) 
3 6 2 6 4 6 8 6 2*+1 

^(1,7,1) g( l>7>2) [ | (-l)*+1ff(l,7,*) 
16 32 >i+3 

+ (-1) k.G(J,k>)-\-G(j,\)-G(j,2)- -G(j,k + i) 
+ • 

Noting that H(l,2,k) = 0, \/k>l, which follows from (12), and the identity F1 + F2 + 
+ F„ = Fn+2 -1, define the following infinite sequences depending on^ and k: 

H(i,jk) = H(i-l,j,k + l)-G(j,k + 2), i = 2,...J-2, j>4, 

H(J-\,j,k) = H(J-2,j,k + 3)-G{j,k + 4),k>\, j>3. 

Note that (16) begins at j = 4 and (17) begins at j = 3. Then, for j > 3, we have 

(16) 

(17) 

Lemma 3: 

H{J-\,j,k) = G{j,k + j + 3)-
fk+j+l 

-G{j,k + j + \)-G{j,k+j) G(J,4) = H{\,j,k). 

Proof: By (16) and (17) [one can also use the identity G(J, k + j + 3) = 2G(J, k + j + 2) 
G(j,k+ 2)], 

H(J -1, j , k) = H(j - 2, j , k + 3) - G(j, k+4) 
= H(J-3,j,k + 4)-G(J,k + S)-G(J,k + 4) 
= - = H{j-i,j,k+i + \)-G(J,j,k+i + 2) G(j,k + 4) 
= - = H{\,j,k + j)-G(J,k+j + \) GO",*+4), 0 = 7 - 1 ) , 

(18) 

rk+j+l 

= GU,k + j + 3)-\ X^O',0 + 1 
;'=! 

-G(J,k+j + l)- - GO, k + 4) 

= H(l,j,k) + G(j,k+j + 3)-2(GU,k+j + \) + G(j,k+j) + -
+ GO, k + 4))- GO, * + 3) - GO, k+2) 

= H(l,j,k) + G(j,k+j + 2)-(G(j,k+j + l) + G(j,k+j) + ~ 
+ G(J,k + 3) + G{j,k + 2)) 

=mj,k). 
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From (16)-(18) and (12), 

tf(U,*) = P + U '*- ' ) + G a t + 1 X " > U = I J~X (19) 
[G0',* + 1) = 1, if A: = 1, *• ' 

\H{\, j , k-3) + G(J, k + l), if A: > 4, 
[G(y, A +1) = 1,2,4, if k - 1,2,3, resp. 

The second result of (19) is shown as follows. By (12), H(l,j,l) = l. For 2<m<j-2, 

H(mJ,i) = H(m-lJ,2)-G(j,3) 

= H{m-2J,3)-G(j,4)-G{j,3) 

= -- = H(l,j,m)-G(J,m + l) G(j,3) 

= GC/,i» + 3 ) - £ G a , i ) + l \-G(j,m + \) GO',3) 

= GO, m + 3) - (1 + G(/', 1) + GO, 2) + 2G(y, 3) + • •• + 2G(j, m +1)) 

= 2'- ' - 1 - 2(1 + 2 + • • • + 2y-'_3) - 1 , 0 < i < j - 4, 

= 2>-'_1 _ (l + 2 + • • • + 2y-'~2) = 1. 

The second result of (20) follows by a similar method. From (19) and (20), one obtains 

Lemma 4: 

f H(i, j , k) f, G(j, k) f H(i +1, j , k) 
La 0k+2+i La ~k+l+i ^ La 0k+3+i ? / h->J J> K^1) 
k=l L k=2 L k=l L 

f, H{j - 2, j , k)_^ Gjj, k) ^ H(X j , k) 
La nk+j La 0k+j-l ^ La nk+3+j ' V ^ / 
k=l A k=2 z k=l L 

Proof: The equalities (21) and (22) follow by summing (19) and (20) and adjusting the sum-
mation subscripts after division, respectively, by 2k+2+1 and 2k+J. 

Returning now to the proof of Theorem 2 when r/ = 2, applying (21) and (22) in Lemma 4 
recursively, it follows that 

(23) 2>-\fH{\,j,k 
2J h 2"+3 

Taking this and Lemma 2, one obtains 

Lemma 5: 

)_fG(j,k) 
La s%k+2 
k=2 L 

H + . • + 2 , -3 

fG(j,h) hl ^G(j,k)(-l)k _2^3(-iy 
h 2k -l ' h 2k - i -4( - 2 y (24) 
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Proof: Substituting (13) into (23) yields 

>j-iifG(i,k) / L i f G q * ) 
• k=i 

- 1 1 -
1 + - + - + -2 4 •+- » ; - 3 

yfc=l 

00 

CO 

G(j,k) 
2K 

G(j,k) 

2] - 1 If 1_ 
2;+i 2 I 2J~2 2J 41 2^2 

2 ' - 1 + 4 - 2 ' 
2y+i 

2 y - l -2- / ~ 2 +l 
2y 

GC/,*) 3 
2J+1 2J 

2 ; " 2 3^£GO^) = 2,-i 
fc=i 

For 77 = -2 (and 77 < -Xj), the analogs of (21) and (22) are multiplied by (-1)* and (-l)k+1 on the 
left- and right-hand sides, respectively. Similarly, by Lemmas 2 and 4, 

2;-(iy 
2s 

H(\,j,k)(-\f _^G(j,k){-\) 
-,k+3 z-

Ar=2 

•>fc+2 2 2-/_3 

=>Z 
*=1 

Gq*X-i)* = 2^3(-iy 
2k l -4(-2)y 

A similar analysis yields the theorem for other values of r\ and these details are briefly out-
lined. Lemma 2 becomes 

Lemma 6: 
\G(J,k) 1 ^H(XJ,k) 

1 G(j,k)(-lf 
TKI+1))M V 

—-+T H(\j,k){-\y k+l 

n 
k+3 -, ri>Xj. 

(25) 

(26) 

Proof: This result follows by straightforward application of geometric series. The interval of 
convergence follows by an argument similar to that given for Lemma 2. 

Lemma 4 and (23) have 2 everywhere replaced by rj. By Theorem 1 and the ratio test for 
absolute convergence, (10) diverges at the endpoints r/ = ±Xj and, therefore, diverges for 
{rj:i] < \Xj\). To prove (11), observe that G/(2) = 2;~1 which, as 7'->+o°, implies the second 
part of (11). The first part follows directly by factoring r/J~l from Gj(rj) and letting y'-->+oo. 
The infinite series (10) is absolutely convergent for all values of j . Table 2 gives the values of 
{H(i, j , k)}l

k
6

=1, i - 1,2,3,4, and G(j, k) for 7 = 5. The sequences [H(i9 j , k)}™=1 appear as peri-
odic differences, as defined in (16) and (17). 

In the next section, a brief introduction to fractals and fractal dimension is given along with 
several examples of fractals. A fractal is presented with counting features depending on the 
Fibonacci numbers. 
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TABLE 2. {(7(5, k), H(i, j , k)}1^ for i = 1,2,3,4 

| Ujlk 

Jc = 

G(5,k) 

/ = 1 

2 . 

3 

4 

2 

1 

3 

3 

2 

3 

3 

2 

7 

6 

4 

7 

4 

4 

14 

12 

9 

14 

5 

8 

28 

25 

19 

28 

6 

16 

56 

50 

38 

56 

7 

31 

111 

99 

75 

111 

8 

61 

219 

195 

148 

219 

9 

120 

431 

384 

292 

431 

10 

236 

848 

756 

575 

848 

11 

464 

1668 

1487 

1131 

1668 

12 

912 

3280 

2924 

2224 

3280 

13 

1793 

6449 

5749 

4373 

6449 

14 

3525 

12679 

11303 

8598 

12679 

15 

6930 

24927 

22222 

16894 

24927 

16 

13624 

49006 

43678 

33223 

49006 

3. FIBONACCI NUMBERS AND FRACTALS 

By definition, a fractal is a self-similar (self-affine) structure such that the topological dimen-
sion is strictly less than the HausdorfF-Besicovitch dimension (see Mandelbrot [12]). The topo-
logical "covering" dimension DT or a set X has the property that any open covering of X has an 
open refinement with at most DT +1 open sets intersecting (see Hastings & Sugihara [9]). DT = 2 
in 9l2, since any open covering has a refinement with at most three open sets intersecting. 

Another important concept in fractals is the Box dimension 

logr r-»0 
(27) 

where, for each r > 0, N{r) is the smallest number of open balls having radius r which also cover 
X(see [9]). D is also denoted as the Hausdorff dimension when the dimensions are equal, includ-
ing the fractal in the present paper. The value of D is computed for simple geometrical objects 
using the concept of scale factor and scaling dimension. Suppose X is reconstructed into n scaled 
copies of itself, each diminished in size by a factor k. Then 

logy? 
D = -logl/Jt" 

(28) 

In certain fractals the scaling, Hausdorff, and Box dimension are all equal, including the fractals in 
the present work, since the Hausdorff dimension of a self-similar set with scaling ratio 1 / k satis-
fies (28) also (see Crownover [5]). 

Fractals are generated mathematically and have a geometric structure in Euclidean space. 
They are used as mathematical models for natural objects such as length of shorelines, leaf or fern 
patterns, Brownian motion, chaos, cause and effect such as minimization of energy to create 
fractal-like mud-flats, more exotically, minimization of scalar fields in the self-reproducing 
inflationary universe. The artist M. C. Escher was a precursor to many geometric ideas, having 
created drawings of self-similar structures (see Scientific American [16]). Fractals have also been 
studied by Pietgen, Jurgens, and Saupe (see [14]) who give an interesting introduction to the 
subject. 
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The concept of a self-similar (self-aflSne) structure is intrinsic to a fractal, although not all 
self-similar structures are fractals, i.e., continually subdividing a square into four sub-squares does 
not create a fractal because D-DT = log22n /log2" = 2. 

The Cantor set is defined by removing the middle third of a given set of intervals, starting 
with the unit interval. The Cantor set has the cardinality of the unit interval although it is a totally 
disconnected set. In the present work a self-arTine, two-dimensional structure is created by begin-
ning with a right triangle and then orthogonally projecting onto the sides in clockwise direction 
[Figs. 1(a), 1(b), 2(a), and 2(b)]. 

(a) Fractal Generation, Level 1, j = 2 (b) Fractal Generation, Level 2, j = 2 

FIGURE 1 

(a) Fractal Generation, Level 8,j = 2 

(b) Self-Similar Pieces 

FIGURE 2 
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In the present paper the geometrical meaning of "orthogonally project" (on the sides of an 
isosceles right triangle) is as follows: begin with the vertex of the right angle and draw a line that 
is orthogonal to and meets the opposite side at the midpoint. Proceeding clockwise, from the 
midpoint of this side draw another line orthogonally to the midpoint of the opposite side. The 
new boundaries form a right triangle that is similar to the original triangle but rotated 90 degrees 
counterclockwise. Likewise, two other similar triangles are formed, one on either side of the new 
triangle. It is left only to decide which triangles the process is applied to at every stage. 

To give an example: begin with a right triangle with vertices at (0,1), (-1,0), (1, 0). Let this 
be the 0th stage. At stage k = 1, orthogonally project onto the sides of the triangle in a clockwise 
direction. This forms a triangle (grey-shaded) and two new (unshaded) triangles. Continue this 
process by orthogonally projecting onto the largest of the unshaded triangles at level k, k = 1, 2, 

Lemma 7: This process forms a Fibonacci sequence such that the total number of unshaded tri-
angles at level k is Fk+2 of which Fk+1 are largest. The total number of shaded triangles at stage k 
is Fk+2 - 1 . The respective side lengths of the largest unshaded triangles is reduced in side length 
for consecutive stages by scale factor 1 / V2. 

Proof: By inspection of Figure 1(a), the induction hypothesis is true for k = 1, since F3 = 2. 
At level k, there are Fk+2 unshaded triangles of which Fk+l are largest and scaled in length size by 
a factor of 1/V2 with respect to stage k-l. Projecting on the Fk+l largest triangles results in 
2Fk+l + Fk =Fk+3 unshaded triangles of which Fk+Fk+1 = Fk+2 are largest, since the scale factor 
of the largest to the smallest at any stage is 1/ 4l. Thus, the small unshaded triangles at stage k 
become some of the large unshaded triangles at stage k +1. That the number of shaded triangles 
is Fk+2 -1 follows by induction also, since at level k +1 the number of old and new shaded tri-
angles is (Fk+2 -1) + Fk+l = Fk+3 - 1 . 

The large unshaded triangles in Figures 1 and 2 and described in Lemma 7 are generated by 
an affine transformation of the form 

where k is the level of the projection and the integer i depends on k. Determining the precise 
values for ak i and hkJ are not considered in the present paper. The small unshaded triangles in 
Figures 1 and 2 and described in Lemma 7 are generated by the following affine transformation: 

ckA 

for real numbers ckJ, dkJy k = 1,2, 3,.... For example, a1? x = blx = 1 / 2, clx = -1 / 2, dxl = 0. 
Construct a compact set E2 as follows: at each stage k, for a projection on a given triangle, 

delete the shaded triangle, leaving two open unshaded triangles and their boundaries. Let °M4 
denote the union of all of the unshaded triangles with their boundaries at level k. Then set E2 = 
Hj^i^k- Clearly, E2 is self-similar by construction, that is, E2 is scale invariant and has 

*<*»-a 
coŝ f- - sin ̂ f 

sm 3TT C O S ^ 

X 

\y + 

<U(X,JO = 
cosO 
sinO 

- sin 0] 

cosO J 
\x 

u. 
+ 
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topological dimension 1, i.e., no open subsets of 2ft2. Let Z +̂i denote the perimeters of the large 
/—k—1 

unshaded triangles in Lemma 7 corresponding to level k, which have hypotenuse length 1/V2 
and base=height length 1/V2 ~ . It follows that Lk+l -214l ~ + 1/' 4l " . Hence, observing 
that Wk £ °M4-i, V& > 2, the total length, denoted Z, of the set E2 is given by 
Lemma 8: L = lim (i^+1Zjt+1 +FkLk) = +oo. 

fc-M-OO 

Proof: The proof follows from Theorem 1 and the fact that <j2<xj9 Vy > 2. 

It is noted that Figure 2(a) contains eight basic shapes, a right, isosceles triangle T0, Figure 4 
rotated counterclockwise through 135°. The shapes are generated with the affine transformations 
2T a n d ^ . 

Theorem 3: The compact set E2 is a self-similar set with Box=scaling=Hausdorff (dimension) 
D = 1.38848. 

Proof: Such sets are normally called fractals in the literature. The Hausdorff and Box 
dimensions both equal the scaling dimension, since E2 is self-similar with two scaling ratios, 
1/V2 and 1/2, as observed by the geometry of Figure 2(a). This is also evident in the trans-
formations 2T(x, y) and °U(x, y). By Lemma 7, there are Fk large triangles at level k -1, and the 
k^ Fibonacci number is almost linearly proportional to x2 for large k so that the scaling 
dimension 

^"^logVz *->+0° ^ log V 2 

= 21ogx2 =2qog(l + V 5 ) - l o g 2 ) = l 3 g g 1 g 

log 2 log 2 

For completeness, D is calculated by the Box Counting Theorem (see Barnsley [3]). 

Theorem 4 (The Box Counting Theorem): Cover 2ft2 by boxes of size O" , C > 0 . 0 < r < l , 
where C and r are fixed real numbers. Let Nn denote the number of boxes of side length Crn that 
intersect any compact set K c 2ft2. Then K has fractal dimension 

D= lim !28^L 
«->+oo log Cr 

By inspection of Figure 2(a) and generalizing to all values of k, one finds that 
I—£-1 

Lemma 9: For k = 1, 2, 3,..., i^+4 squares of side length 1 / 2V2 cover E2. 
Proof: To prove this lemma, we observe several facts: the triangles are all oriented with 

respect to the x-y plane so that either the sides or diagonals of any triangle (shaded or unshaded) 
are parallel to the .y-axis. Hence, any covering or tiling of E2 or a subset of E2. can be done in 
two ways, which is countable if the covering boxes are aligned with the boundaries of the 
triangles. A right isosceles triangle of hypotenuse length 1/V2 can be covered by two squares 
of side length I/2V2 ~ or three squares of side length 1/2^2 (see Fig. 3). By inspection of 
Figure 1(b), the two large unshaded triangles of hypotenuse length 1 can be covered by three 
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boxes of side length I/2V2. The small unshaded triangle of hypotenuse length 1/V2 can be 
covered by two boxes of the same side length (1/2^2). The total number of boxes is 8. For this 
value of k, the boxes can be oriented 45°, with diagonals parallel to thej-axis. Proceeding induc-
tively, assume that Fk+l large and Fk small unshaded triangles of hypotenuse lengths 1/V2 ~2 and 
1/V2 , respectively, are generated that can be covered by 3Fk+1+2Fk =Fk+4 squares of side 
length 1/2V2 . In applying the inductive hypothesis to k +1, we apply the identity 3Fk+2 + 
2Fk+l = Fk+5, the new unshaded triangles have hypotenuse length 1/V2 ~ , 1/V2 , and the fact 
that E2 e°M4, \/k > 1. There is no overlap of covering boxes on adjacent unshaded triangles, 
since opposite to the hypotenuse of any unshaded triangle is the boundary or a shaded triangle of 
equal or greater area. The fractal dimension is given by the Box Counting Theorem: 

D= lim logFfr+4 =138848. 
*-"~log2V2 

FIGURE 3. Covering the Right Isosceles Triangle by Squares 

In the next section, triangles Tj_2, J > 2, are defined in the x-y plane. A theorem is given 
related to tiling U7C0

2 %-> 7 ^ 2 , with the triangles of the tiling enumerated by a Fibonacci j -
sequence. Ej, j>2, is characterized precisely, in terms of the union of a set of points that is 
contained in the set T0 LJ TX KJ • • • u Tj_2 = U/r02 Tr For a particular tiling of U7C0

2 Tt, it is shown that 
Ej is compact. In this case, the geometric object E2 is translated, contracted in size, and rotated 
to create sets Ej9 j > 3. 

4 SETS Ej WITH FRACTAL DIMENSION 

Consider the line y-x + l and the ordinates {-1,1,3,7,..., 2n -1,...} (Fig. 4). Denote by Tl7 

T3,..., T2n_x the triangles with boundaries formed by the set of vertices given, respectively, by 

{{(1, 0), (1,2), (0,1)}, {(3, 0), (3,4), (1, 2)}, {(7, 0), (7, 8), (3,4)},..., 
{{2n -1, 0), (2" - 1 , 2"), (2""1 - 1 , 2""1)},...}. 
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Similarly, denote by TQ, T2,..., T2n the interlocking triangles with boundaries formed by the set of 
vertices given, respectively, by 

{{(-1, 0), (0,1), (1, 0)}, {(1, 0), (1,2), (3, 0)}, {(3, 0), (3,4), (7, 0)},..., 
{(2" -1,0), (2W -1,2"), (2W+1 -1,0)},...}. 

Note that T0 does not follow the pattern given by the general triple of vertices. 

FIGURE 4. Fractal Boundaries 
It follows that (if u denotes the union of geometric objects) T0 u Tx is a reflection of TQ about 

the line y = l-x, union with TQ; ^ U T J U J ^ is a reflection of T0KJTX about x = l, union with 
2JJ u 7J; recursively, 2[Ju2[u• • • u^„_x is a reflection of 7^uIJu• • • uZ^_2 about the line j = 
2" - 1 - x , union with 7J v̂ Tx u • • • u 7^_2; 2J u7J u • • • uT2n is a reflection of T0 u 7 [ u • • • uZ^_x 

about the line x = 2" - 1 , union with T0 u IJ u • • • u ^w_1. 

Theorem 5: A right isosceles triangle of area 2;~2 can be subdivided into (tiled by) similar 
triangles enumerated by the Fibonacci y-sequences G(J, k), V/ > 2. The total number of triangles 
of a given area forms a sequence 1,1,2,..., G(y, &),.... The numbers in the sequence correspond 
with the number of similar triangles of area, respectively, 1/4, 1/8,..., G(J9 k)/2k+l,.... 

Proof: Consider a right isosceles triangle of area 2;~2, j > 2, for example U;C0
2 Ti9 which can 

be subdivided into 2J congruent subtriangles each having area 1/4. Figure 5 is a tiling of T0 with 
16 subtriangles each having area 1/16. 

FIGURE 5. A Tiling of T0 
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Construct another tiling of U/r02 Tt as follows. The first element or triangle of the tiling con-
sists of any one, G(J, 1), of the 2J subtriangles. Then subdivide the remaining 2J - 1 triangles into 
2J+l - 2 similar subtriangles of area 1/8, by bisecting the right angle of each triangle. The second 
element or triangle of the tiling consists of any one, G(y,2), of the 2 / + 1 -2 subtriangles. Then 
subdivide the remaining 2J+l - 2 - 1 into 2J+2 - 4 - 2 subtriangles each of area 1/16. Continue this 
procedure so that there are 

Lemma 10: 
G(/', j + k) = 2 ^ " 2 - 2*-2GO, 1) 2G(j, k-2)- G(j, k-l) (29) 

subtriangles to be subdivided into triangles of area 1 / 2k+l, k>2. 

Proof: The proof follows by induction ony and k. For example, 

773 = G(4,12) = 210 - 26G(4,1) - 25G(4,2) - 24G(4,3) 
- 23G(4,4) - 22G(4,5) - 2XG(4,6) - G(4, 7). 

Hence, we see that the number of unchosen triangles is a Fibonacci j-sequence. From (29) and 
Lemma 5, we find that 

which simply states that all of the area of the triangle U/r02 Tt is tiled by this procedure. 
This concept can be illustrated more formally in set-theoretic language, it is shown below 

that in the limit this procedure gives a tiled area equal to the area of the triangle U/r02 %• 
However, it is not clear that U7C0

2 Tt is the union of all of these tiles. For example, when con-
structing the standard middle 1/3's Cantor set, the interval [0,1] is not equal to the union of the 
middle 1/3's that are removed. 

For given j , and k > 1, denote the set 3 ^ = {/(/, G(y, j))\i = 1,..., G(J, k)} having as ele-
ments the G(j, k) congruent subtriangles described by the k^ step of the procedure above. By 
construction, for given j , and each k > 1, the triangles / ( / , G(j, k)) are pair-wise disjoint except 
for boundaries. Moreover, for each j>2, 

a r e a l U ^ M } = ^ { { J ^ ^ f(i,G(j,k))} 
4oo G(j, k) +oo fir • i \ 

= £ I area{/(/,Ga^))} = 2 ^ = X ^ r 1 -
k=l Z=l k=l l 

This completes the proof of the theorem. It is observed that the theorem may be generalized by 
replacing G(y, k) by an increasing sequence of positive integers n(j, k) with the property that 

t'!%£- = 2j-2,0<n(j,k)<2^-\k>\. 

For convenience in what follows, take the triangles f(i, G(J, k)) as open triangles, without 
boundary, thus interior(/(j, G(y, k))) = f{i,G{j,k)). Even though U^S^u is not necessarily 
the same set as U/r02 Ti9 we have the following, where an overbar represents closure of a set. 
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Lemma 11: U & 9 u k = U& 9uk = T0 u 3 J u • • • uZ}_2 = U ^ ^ 

Proof: We denote U/r02 3̂  as right triangles previously defined together with the boundaries. 
Let x G U/r0

2 Ti9 then there is a sequence {xk} e U£Ti 9j.it such that xk & x, \ x - xk | -» 0 as k -» +00. 
Otherwise, there is £ > 0 such that 

| x - x j > £ , Vxa eU^Sjr,*, 

where a is the index of an uncountable set containing any possible sequence. Hence, 

2'"2 - area {U^ 9&,*} < 2J'2 - xs2S, 
where J is the proportion of the s -disk that intersects the triangle T0 u 7J u • • • u 7J_2, a contra-
diction, so x e Uj^Sj,* , i.e., x is an accumulation point of U^Sy,* (see Apostol [2]). Each x is 
arbitrary, which shows that U/r02 ? £ U ^ S ^ M . Equality holds, since the opposite set inclusion is 
true, that is, / ( / , G(j, k)) c U/="0

2 ?, Vi, *. By a similar argument, U ^ " ^ 7 = U/=0
2 ^- The set 

U,Co 3J'\Uĵ i9j-,ik consists of points and straight line segments, i.e., contains the union of the 
boundary lines of the triangles /(/ ', G(y, k)) and U/=0

2 Tt. We note that U/r0
2 2̂  is closed and 

UjtTiSj",* is open, so that U/r02 T^U^S'M is closed and bounded and, hence, compact. 

Lemma 12: There is a "tiling" {/(/, G(2, *))}; 1 = 1,..., G(2, *); * = 1,2,... of T0 so that E2 c 
3J \Ujt^i^2,it ? where the "tiling" has the same area as T0 but is not necessarily equal to T0. 

Proof: To prove this, we let the open shaded triangles in the generation of E2 be denoted by 
the triangles / ( / , G(2, k)) which, by Theorem 5, tile TQ and, hence, have the same area as TQ. To 
prove the first part of the lemma, it follows that if x GE2 then x £/( / , G(2, k)) for any /, k; thus, 
x «ld9i,ife, and so xs^Wj^^k since x GT0. 

We note that x GE2 is not necessarily on a straight line segment or even a vertex of a triangle 
in ^\U^>

1S?2,A:- Analogously, the endpoints of the deleted intervals in the construction of the 
Cantor set are not the entire Cantor set. 

Define V{T} to be the set of vertices of a triangle denoted T. Then we find that 

Theorem 6: E2 3 U £ Uf^'k) V{f(i, G(2, *))}. 

Proof: That E2 contains this set follows by the nature of the construction of E2 and noting 
that two new vertices are added at level k, for each large unshaded triangle, which are the 
midpoint of the hypotenuse and the midpoint of an adjacent side. It is clear that no vertices are 
deleted once accumulated in E2 by this process. 

E2 also has the property that 

Corollary 2: Each point x in E2 is the accumulation point of some countable sequence {x^} in 
E2, such that xk * x, | x - xk | —> 0, k -» +00. That is, there are no isolated points in E2. 
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Proof: Any vertex of / ( / , G(2, k)) for some /', k is always a vertex of successively smaller 
triangles / ( / , G(2, k0)), k0>k, having vertices belonging to E2 and limiting side lengths tending 
to 0 as k -> +00. 

Example of a set Ej with dimension 2 log Xj / log 2 

Define, for j > 2, the set Ej = \j£x U S M ) V{f(i, G(j,>))} for an arbitrary tiling of U/="0
2 Tt. 

In words, this is the set of all possible vertices of the tiled triangles / ( i , G(j, k)). This definition 
applies equally well to j = 2. For the sake of convenience, include j = 2 in the following analysis. 

Ej is not necessarily closed, but is bounded. Let {x} denote the set of accumulation points 
of Ej that lie in U7Co ^jAU^Sj,*-. Define Ej = Ej u {x} so that Ej contains all its accumulation 
points and is closed and bounded, so that E- c 2&2 as in Theorem 4. 

To calculate the Box dimension, we observe that (G(j, k)) triangles / ( / , G(j, &)), i = 1, ..., 
G(j, k) are tiled at each level k. By induction, it can be shown that the number of ways to 
position the G(j,k) unshaded triangles is 2G(J, k+j) = G(j, k) + G{j, k + j + X), &>1, as in 
Lemma 10 (except k > 2). We have 

Theorem 7: \/j > 2, Ej has Box dimension = 21ogx7- /log2. 

Proof: For each &, the number of unshaded triangles forms twice a Fibonacci j-sequence, 
I—k-\ 

2G(j,k+j), \/k>l having hypotenuse length 1/V2 , each of which by Lemma 9 can be 
covered by two or three squares of side length 1/2-̂ 2 or \I2<J2 , respectively. If we consider 
the latter, then at least one square is nonintersecting, except for boundaries, with other triangles. 
Hence, squares that overlap on different triangles cannot exceed 4G(J,k+j). Thus, it follows 
that the number of covering squares of size 1/2A/2 is at least 2G(j,k+j) and at most 
6G(J,k + j), that is, the number of squares of side length 1/2V2 that intersect Ej is bounded 
between the two scaled multiples of G(j, k + j). By taking the limit as in Lemma 9 and applying 
a sandwich technique and Theorem 1, one obtains 

2lQg*y = l i m lQS2G(j9k+j)^D^ l i m log6GO^ + j ) = 21ogx/ 

log 2 k-^+co i0g 2 ^ *-^° log2V2* l o S 2 

This completes the proof of the theorem. 

The construction of E2 suggests that compact structures are formed by reflecting triangles of 
suitable size into an adjacent triangle. The affine transformations 2T, °ll can be applied to form 
subsequent projections on the reflected triangles. Ej, j >3, can be constructed with countably 
many copies of T0, since the sequences {G(j, k)} are the sum of countably many "shifted" 
sequences Fk. For example, for j = 3, 

{G(3, *)} = {1,1,2,4, 7,13,24,..., G(3, *),...} 
= {1,1,2,3,5,8,13,...,^,...} + {0,0,0?1,1,2,3,...,F,,...} 

+ {0,0,0,0,1,1,2,..., Fk9...} + - - + {0,0,.. .,0,1,1,2, 3, 5,.. .,F,,...} + - . . 

Each of the sequences above corresponds to a scaled in size, tiled copy of 7̂  which contains the 
fractal E2 such that two copies of T0 have the same area if the same number of zeros appear in the 
sequence. In the above, the sequences on the right-hand side correspond with triangles of area 1, 
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1/8, 1/16, ..., respectively, illustrated in Figures 6(a)-6(f), which show one of the possible ways to 
construct E3, by reflecting unshaded triangles, projecting on these reflected triangles to create 
shaded triangles, and reflecting the new unshaded, smaller in area by 1/2, triangles so that their 
number forms a sequence {G(3, k)}. By Theorem 5, this process tiles T0^jTt and generates E3 

with each point in E3 on a translated, rotated, and contracted copy of E2, and hence an accumula-
tion point of E3. We also note that the fractal dimension of E2 is invariant under rotation, trans-
lation, or contraction. , 

(a) Fractal Generation, Level 3, j = 3 (b) Fractal Generation, Level 4, j = 3 

(c) Fractal Generation, Level 5, j = 3 (d) Fractal Generation, Level 6,j = 3 

(e) Fractal Generation, Level 7, j = 3 (f) Fractal Generation, Level 8, j = 3 
FIGURE 6 
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Figures 7(a) and 7(b) represent approximations of the fractal E2 described in Section 3, and 
were constructed using Logo from a program by Robert G. Clason (see also [4]). The following 
dimensions were calculated on a 77-85©, 

A = 1758292843, D4 = 1893554493, Ao = 1998583839, Ao = 1999998624. 

As an interesting note, the projections on right triangles may be viewed as projections onto hyper-
planes in <3l2. This idea was also investigated in a more general setting in the manuscript of 
Angelos et al. [1]. 

(a) Fractal Generation, Level 10,j = 2 

(b) Fractal Generation, Level l l ,y = 2 

FIGURE 7 
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