A LOGARITHMIC FORMULA FOR FIBONACCI NUMBERS

Gerard R. Deily
United States Department of Defense Washington, D.C.

If the logarithm of the Fibonacci number F_{n} is plotted against n, it can be seen that for large n the graph is a straight line. Thus one might expect that Fibonacci numbers could be computed from a formula of the form

$$
\begin{equation*}
\log F_{n}=m n+b \tag{1}
\end{equation*}
$$

where m is the slope of the line and b its intersection with the vertical axis. That this is so can easily be shown by manipulating Binet's formula

$$
\begin{equation*}
F_{\mathrm{n}}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{\mathrm{n}}-\left(\frac{1-\sqrt{5}}{2}\right)^{\mathrm{n}}\right] \tag{2}
\end{equation*}
$$

into the following form:

$$
\begin{equation*}
F_{\mathrm{n}}=\frac{1}{5}\left(\frac{1+\sqrt{5}}{2}\right)^{\mathrm{n}}\left[1-\left(\frac{1-\sqrt{5}}{1+\sqrt{5}}\right)^{\mathrm{n}}\right] \tag{3}
\end{equation*}
$$

For large n, the second term within the bracket becomes negligible, and hence (3) becomes

$$
\begin{equation*}
F_{\mathrm{n}} \frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{\mathrm{n}} \tag{4}
\end{equation*}
$$

Taking logarithms then gives

$$
\begin{equation*}
\log F_{n} \quad n[\log (1+\sqrt{5})-\log 2]-\frac{1}{2} \log 5 \tag{5}
\end{equation*}
$$

which is of the form (1). If base 10 is used, the characteristic of the logarithm computed in (5) then gives the order of magnitude of F_{n}. This knowledge is useful in determining required sizes of registers when setting up Fibonacci problems for computation.

