# A DIVISIBILITY PROPERTY OF FIBONACCI NUMBERS 

Lenard Weinstein
Massachusetts Institute of Technology
The following is an interesting theorem concerning the first $2 n$ Fibonacci numbers:

Theorem
Give any set of $n+1$ Fibonacci numbers selected from the set $F_{1}, F_{2}, \ldots, F_{2 n}$, it is always possible to choose two elements from the $n+1$ Fibonacci numbers such that one divides the other.

This theorem will be proved using the following two theorems:
Theorem 1:
Give any set of $n+1$ integers selected from the set l, 2, ..., 2 n , it is always possible to choose two elements from the $\mathrm{n}+1$ integers such that one divides the other.

Proof:
We shall use induction. The theorem is trivially true for the case $n=1$. Assume it true for $n=k$. If $n=k+1$, we must prove that any set of $k+2$ integers selected from the set $1,2, \ldots, 2(k+1)$ contains two elements such that one divides the other. If the $k+2$ integers are contained in the set $1,2, \ldots ., 2 k$, then by the inductive hypothesis, the theorem is true. Similarly, if $k+l$ of the integers are contained in the set $1,2, \ldots, 2 k$, and the other integer is either $2 k+1$ or $2(k+1)$, the same reasoning applies as above. If only $k$ of the integers belong to the set $1,2, \ldots, 2 k$, then the other two integers must be the numbers $2 k+1$ and $2(k+1)$. Consider any set of $k$ numbers from the set $1,2, \ldots, 2 k$ and the integer $k+1$. By the inductive hypothesis, we can find two numbers from this set such that one number divides the other. Since $k+1$ does not divide any number but itself, in the set $1,2, \ldots, 2 k$, at best it is divisible by another element of the set. Any number that divides $k+1$, though, divides $2(k+1)$. Thus, any set of $k$ elements chosen from the set $\{1,2, \ldots$, $2 k\}$ and the element $2(k+1)$, contains two numbers such that one number divides the other. Therefore, the set of any $k$ integers from the
set $1,2, \ldots, 2 k$, plus the numbers $2 k+1$ and $2(k+1)$, also contains two elements such that one divides the other.

Theorem 2:
If $F_{n}$ is the $n^{\text {th }}$ Fibonacci number $\left(F_{1}=1, F_{2}=1\right)$, then $F_{(a, b)}=\left(F_{a}, F_{b}\right)[1] . \quad((a, b)$ is the greatest common divisor of the integers a and b .) This is a widely known theorem, easily proved.

It follows that if any set of $n+1$ Fibonacci numbers $F_{a_{1}}, F_{a_{2}}$, $\ldots F_{a_{n+1}}$, is chosenfrom the set $F_{1}, F_{2}, \ldots, F_{2 n}$, there exist two elements of the $n+1$ Fibonaccinumbers such that one number divides the other. For consider the numbers $a_{1}, a_{2}, \ldots, a_{n+1}$. By theorem 1 , we can find two numbers $a_{j}, a_{k}$ from these $n+1$ integers such that $a_{j} \mid a_{k}$. Thus $\left(a_{j}, a_{k}\right)=a_{j}$. It follows that $F_{\left(a_{j}, a_{k}\right)}=F_{a_{j}}=\left(F_{a_{j}}, F_{a_{k}}\right)$ by theorem 2. This means $\mathrm{F}_{\mathrm{a}_{\mathrm{j}}} \mid \mathrm{F}_{\mathrm{a}_{\mathrm{k}}}$, and the theorem is proved.

## REFERENCES

1. N. N. Vorob'ev, Fibonacci Numbers, Blaisdell, New York, 1961, p. 30 .

$$
X X X X X X X X X X X X X X X
$$

The Fibonacci Bibliographical Research Center desires that any reader finding a Fibonacci reference, send a cardgiving the reference and a brief description of the contents. Please forward all such information to:

